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Abstract

Understanding the extent of technological diffusion is important to economics broadly and in the
context of health care specifically. I show that new technologies may pose tradeoffs between different
dimensions of quality or productivity. In a Roy model, I show that these tradeoffs can explain why two
technologies coexist. The model also serves as a theoretical basis for using an instrumental variable to
uncover evidence of tradeoffs. These local average treatment effects can be used in a benefit-cost analysis
to assess whether the technology has diffused to an efficient extent. I use a patient’s distance to hospitals
performing laparoscopic (minimally invasive) surgery, relative to her distance to hospitals performing
any surgery at all, as an instrument for whether she undergoes laparoscopic, as opposed to abdominal
(open), hysterectomy. In Medicare inpatient claims, I find that laparoscopic surgery causes a shorter
length of stay but a greater readmission rate, relative to abdominal hysterectomy, among patients on the
margin between the alternatives with respect to this quasi-experiment. This demonstrates laparoscopic
surgery’s tradeoff, at least among some patient subpopulations. In a back-of-the-envelope benefit-cost
analysis, I estimate that laparoscopic surgery may pose a net loss among these marginal cases, suggesting
there may be too much laparoscopic surgery in this setting.
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1 Introduction

The speed and extent of technological diffusion is a broadly important subject in economics. In health

care, new technology can drive health improvements but also expenditure increases. Due to asymmetric

information in health care markets, it is important for policymakers to know why old and new technologies

coexist and to assess their relative effectiveness. Understanding the welfare impacts of technological diffusion

is tricky when innovation occurs on multiple dimensions of quality, when a technology’s effectiveness differs

across applications or subpopulations, and when there is selection into technology adoption on the basis of

potential gains.

My paper studies how a newer technology’s quality or productivity can explain its coexistence with an

older technology. I construct a Roy model which shows that old and new technologies may coexist if the

new technology presents tradeoffs between multiple dimensions of quality in at least some cases. It also

shows that a technology’s tradeoffs are apparent among marginal cases, and so evidence of those tradeoffs

can be estimated using well-understood instrumental variable and marginal treatment effect methods. In

turn, these estimates of the magnitudes of the tradeoffs among marginal patients can be used in benefit-cost

analysis to assess whether a technology has diffused to an efficient extent. I study the choice between two

alternative methods of total hysterectomy, the removal of the uterus and cervix: abdominal surgery, which

entails making large incisions in the patient’s abdomen, and laparoscopic surgery, in which long, straight

devices are inserted through small incisions in the abdomen to detach the specimens. Despite laparoscopic

surgery’s promises of less blood loss and less trauma, it is only used in six percent of Medicare-covered

hysterectomies. I show that laparoscopic hysterectomy poses a tradeoff between two key dimensions of

quality among marginal cases.

Evaluating the extent of diffusion of technologies that are effective for some but ineffective for others is

important in assessing health care productivity (Chandra and Skinner, 2012). Randomized controlled trials

of medical treatments are costly to conduct, especially to estimate heterogeneous treatment effects across dif-

ferent subpopulations, and the selection of types of patients and providers into choosing different procedures

on the basis of comparative advantage invalidates the comparison of average outcomes between procedures

as an effectiveness assessment method. This paper both shows a new explanation for the coexistence of

technologies and presents a way to assess the effectiveness and the efficiency of the use of new technologies

using observational data, leveraging our understanding of the selection process underlying patients’ observed

choices and outcomes.

My first methodological contribution is to show how to uncover evidence of a technology’s tradeoff by

estimating the relative effectiveness of the technology among marginal patients using instrumental variable
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methods. I build on the intuitive and common approach of estimating treatment effects among patients on

the margin between two alternatives by using a patient’s relative distance to one alternative over the other

as an instrumental variable (McClellan, McNeil and Newhouse, 1994). Similarly, I estimate the effects of

laparoscopic, as opposed to abdominal, hysterectomy on two key adverse outcomes by comparing patients

who live closer to hospitals that perform laparoscopic hysterectomy, relative to their distance to hospitals that

perform any hysterectomies. I ground this approach with a Roy model of cases sorting between treatments

on the basis of comparative advantage. Patients who are near indifferent between alternatives face a tradeoff

between improvement on one dimension and detriment on another. They could also be induced into one or

other by an instrumental variable. Marginal treatment effect methods from the labor econometrics literature

identify the treatment effects of these marginal cases, and the local average treatment effect identified by

two-stage least squares regression is a positively weighted combination of these marginal treatment effects

(Heckman and Vytlacil, 1999, 2001; Heckman, Urzua and Vytlacil, 2006). 1

Second, I show that this quantification of the tradeoff can be used to assess the efficiency of a technology’s

diffusion. Estimates of a technology’s differential effects among marginal cases can be combined with valua-

tions for the improvements and detriments along different dimensions of quality in a benefit-cost analysis to

assess the efficiency of the margin. Predominant cost-effectiveness assessment methods attempt to ascertain

the efficiency of the use of one health technology over another within a patient population or subpopulation

(Garber and Phelps, 1997; Lakdawalla and Phelps, 2020, 2023). My approach allows for the coexistence of

two technologies to be efficient and for different technologies to be better for different market segments, and

it ascertains whether the share of uses in a population is efficient, from an individual patient’s standpoint.

It does so by exploiting a quasi-experiment that “assigns” treatment between two alternative technologies

that are similar in most respects except for a few measurable outcomes, a natural scenario for considering

the diffusion of a new technology. In my empirical setting, I examine whether laparoscopic hysterectomy has

diffused too far at the expense of open hysterectomy, the incumbent alternative method for removing the

uterus.

My main conceptual contribution is to show that old and new technologies may coexist if a technology

poses tradeoffs between different dimensions of quality or productivity. The prior literature finds that prod-

ucts evolve along multiple dimensions of features and that consumers value these innovations, for example,

in the markets for computed tomography (CT) scanners and for cars (Trajtenberg, 1989; Grieco, Murry

and Yurukoglu, 2023). Different features could affect different dimensions of a technology’s productivity.

I demonstrate with a Roy model that two technologies may coexist because one technology offers relative

1Other prior papers have used regression discontinuity and other evidence around policy thresholds to estimate the marginal
value of care, for example, work by Almond, Doyle, Kowalski and Williams (2010).
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improvements on one dimension but also pose setbacks on another dimension, at least in some applications.

In my setting, laparoscopic surgery causes a shorter length of stay than the alternative, open procedure in

all cases, but not all patients choose it. Therefore, it must cause greater readmission risk for patients near-

indifferent between the two technologies. Prior work has found other factors in the speed or incompleteness

of diffusion of new technologies, such as financial incentives (Finkelstein, 2007; Acemoglu and Finkelstein,

2008; Clemens and Gottlieb, 2014), information frictions (Skinner and Staiger, 2015), and administrative

hurdles to billing for the use of new procedures (Dranove, Garthwaite, Heard and Wu, 2021). In other

industries, coexistence of technologies has been attributed to firm size (Karshenas and Stoneman, 1993), the

costs and benefits of different coinventions (Bresnahan and Greenstein, 1996), lack of presence of comple-

mentary capital (Goldfarb, 2005), and limitations imposed by product features (Gross, 2018). I show that

technologies may coexist because old technologies may still have an advantage among some patients in terms

that affect patients’ physical health.

To illustrate the paper’s central point, I build a Roy (1951) model in which patients and physicians

choose a technology on the basis of how the alternatives affect two dimensions of productivity, rather than

just one as is typical. This allows me to consider the role that heterogeneity of a technology’s improvements

across quality dimensions may play in determining the extent of that technology’s diffusion. In this scenario,

laparoscopic surgery must cause greater readmission risk than abdominal surgery, at least among marginal

patients and inframarginal abdominal patients. The model I present is similar to that of Chandra and Staiger

(2007) and (2020). In those papers, the comparative advantage of one treatment alternative versus another

differs across patients, but the authors are agnostic as to what drives differences in comparative advantages

across cases. In my model, I build out the utility functions so that they depend on two different outcomes.

I allow the technology of interest’s treatment effects on each outcome to vary across the population, thereby

allowing heterogeneous treatment effects across the population to explain why different segments of the

surgical market perceive a different technology to have the comparative advantage.

To estimate laparoscopic surgery’s relative effectiveness among marginal cases, I use a patient’s distance

to her nearest hospital that performs laparoscopic surgery, relative to her nearest hospital performing any

hysterectomy method, as an instrumental variable for undergoing laparoscopic, as opposed to abdominal,

hysterectomy. I estimate the local average treatment effect in Medicare Part A insurance claims. This

identification strategy, following McClellan, McNeil and Newhouse (1994), uses patients’ preference for health

care providers who are closer to their residence.2 To assuage concerns raised by Hadley and Cunningham

(2004) that the effect of distance on care choices may be confounded by socioeconomic conditions related

2See Burns and Wholey (1992) and Garnick et al. (1990) for evidence and reviews of literature on distance’s role in patient
choice of hospital, and see Card, Fenizia and Silver (2019) for a clarification of the relative distance identification strategy.
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to health, I control for a host of characteristics of the patient’s neighborhood, some hospital characteristics,

and Hospital Referral Region fixed effects. My work builds on this literature by grounding the approach

in a microeconomic model that shows how the selection process allows the researcher to find evidence of

tradeoffs by simply using instrumental variable regression to estimate effects among compliers who are on

the margin between the two alternatives. Some prior work estimated patient preferences over improvements

in overall health and avoidance of side effects using dynamic discrete choice modeling on data of patients

updating their pharmaceutical choices periodically (Papageorge, 2016). In this paper, I present an approach

that allows us to estimate evidence of tradeoffs using well-understood, simple-to-implement instrumental

variable methods.

An important characteristic of my setting is that different alternatives have the comparative advantage

for different subpopulations. I seek preliminary evidence that these differences in comparative advantage are

driven by heterogeneous treatment effects, by estimating marginal treatment effects according to methods

from the labor econometrics literature (Björklund and Moffitt, 1987; Heckman and Vytlacil, 1999, 2001;

Heckman, Urzua and Vytlacil, 2006; Brinch, Mogstad and Wiswall, 2017). My paper demonstrates the

use of methods from labor economics to better understand heterogeneity of treatment effects across pa-

tients with unobserved (to the economist) characteristics that affect their treatment decisions, or, “essential

heterogeneity” (Heckman et al., 2006).3

I find evidence that laparoscopic surgery poses a tradeoff between reducing a patient’s length of stay in

the hospital and increasing her readmission risk, at least for patients on the margin between the alternative

hysterectomy methods. I estimate that patients who comply with the relative distance instrument experience

about a 55 percentage point lesser chance of a length of stay of 2 or more days under laparoscopic surgery

than under abdominal surgery, but they also experience a 23 to 36 percentage point increase in the chance of

a 10-day all-cause readmission.4 I am unaware of any other literature that uses instrumental variables to seek

evidence of a tradeoff between different quality dimensions among marginal patients. Much of the health

economics literature on patients’ tradeoffs study their preferences for quality against cost or quality against

distance in choosing among hospitals (e.g., Capps, Dranove and Satterthwaite, 2003; Ho and Pakes, 2014;

Chandra, Finkelstein, Sacarny and Syverson, 2016), choosing whether to seek medical care (e.g., Manning

et al., 1987; Finkelstein et al., 2012) or in choosing their use of pharmaceutical treatment (e.g., Duggan

and Scott Morton, 2010).5 My paper demonstrates that medical technologies may cause tradeoffs not just

3See Basu, Heckman, Navarro-Lozano and Urzua (2007) for another application.
4I find that patients who live 1 mile farther from a laparoscopic-performing hospital, holding distance to any hospital

constant, are 0.04 percentage points less likely to undergo laparoscopic, as opposed to abdominal, hysterectomy (off a 7 percent
base rate). By something of a comparison, Chandra, Finkelstein, Sacarny and Syverson (2016) find through conditional logit
regression that patients are willing to travel 1.8 miles farther for a hospital with a 1 percentage point increase in quality.

5In the medical literature, Stewart, Lenert, Bhatnagar and Kaplan (2005) use vignettes to estimate patients’ relative utilities
over complications and quality of life under different prostate cancer treatment regimes, and Barry, Fowler, Mulley, Henderson
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between health and costs but between one health dimension and another.

I use these point estimates to conduct a preliminary benefit-cost analysis of laparoscopic hysterectomy

relative to abdominal hysterectomy among these compliers of the relative distance quasi-experiment, to

demonstrate how to assess the efficiency of the extent of diffusion of a technology like laparoscopic hysterec-

tomy. If an extra day in the hospital costs $2,490 (Kaiser Family Foundation, 2021) and a readmission costs

$15,200 (Weiss and Jiang, 2006), then my point estimates suggest that laparoscopic surgery poses a net loss

of $2,054 in expectation among patients on the margin. This is likely an underestimate, since this excludes

non-pecuniary costs, which are likely higher for a readmission than for an extra day in the hospital. There-

fore, there may be too much laparoscopic surgery among these Medicare-covered hysterectomy patients, from

the perspective of an individual patient’s utility.

The ratio of the estimates of the local average treatment effects of laparoscopic surgery on the two

adverse outcomes imply that the marginal rate of substitution of a percentage point increase in the chance

of a long length of stay for a percentage point reduction in readmission risk could be between −0.23 and

−0.66, depending on model specification. However, because the choice of procedure could conceivably be

influenced on the margin by actors like hospitals that could have different preferences over adverse outcomes

than patients, this ratio may reflect a combination of different actors’ preferences and objectives, rather than

just a deep parameter of patient preferences.

Finally, I also find suggestive evidence that different cases perceive a different technology to have the

comparative advantage because patients with the greatest unobserved resistance to (i.e., least propensity for)

laparoscopic surgery would experience the greatest increases in readmission risk, even though they would

experience the greatest potential reductions in length of stay due to that procedure, although these marginal

treatment effect estimates are imprecise. These point estimates tell a story similar to that of Suri (2011), who

finds that farmers who would experience the greatest benefit from adopting new hybrid maize technology

also face the highest costs of adoption and thus do not use it.

My paper proceeds as follows. Section 2 describes the decision between laparoscopic and abdominal

hysterectomy. In Section 3, I present the Roy model of patient and physician choices of surgical method and

my finding that this model implies that marginal patients face a tradeoff between two health outcomes. I

also present the empirical hypotheses for marginal and average patients and this implies, and I demonstrate

how the ratio of the effects on marginal patients identify the marginal rate of substitution of a longer length

of stay for a lesser readmission rate under certain conditions. In Section 4, I describe data, including most

importantly the Medicare claims. In Section 5, I present the instrumental variable I use to identify marginal

and Wennberg (1995) conduct an experiment to see if an educational program on prostate cancer treatment alternatives affects
patient decision-making and satisfaction.
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treatment effects and the local average treatment effect, the relative distance instrument, and justify its

validity for these purposes. Section 6.2 presents the two-stage least squares method for estimating the local

average treatment effect of laparoscopic surgery. In Section 6.3, I perform benefit-cost analysis to assess the

efficiency of the extent of laparoscopic surgery’s diffusion in this setting. Section 6.4 presents estimates of the

marginal rate of substitution. Result from the local instrumental variable method and the separate method

for estimating marginal treatment effects are shown in Section 6.5. Section 7 discusses my theoretical and

empirical findings and concludes.

2 Total Hysterectomy

To evaluate a model of treatment decisions and the approach to estimating the marginal rate of substitution,

I focus on total hysterectomy – the removal of the uterus and cervix – and the decision of whether to perform

the surgery abdominally or laparoscopically. This is an ideal procedure for studying the choice of surgical

mode. First, hysterectomy, the removal of the uterus, is a common and important procedure. 93,000

commercially insured hysterectomies (Morgan et al., 2018) and 39,000 Medicare-covered hysterectomies

(author’s calculations) were carried out in the United States in 2012. It was the third most common

operating room procedure among Medicaid claims, the forth most common such procedure among privately

insured claims, the fifth most common such procedure among uninsured cases, and the eigth most common

operating room procedure overall (Fingar, Stocks, Weiss and Steiner, n.d.). It is used to treat several serious

conditions, including uterine fibroids, endometriosis, pelvic organ prolapse, irregular bleeding, and uterine,

ovarian, or cervical cancer.

Second, hysterectomy can be performed with different technologies. It can be performed abdominally

(Figure 1a), in what is called an open procedure, or it can be performed in a minimally invasive way.

Laparoscopic hysterectomy was introduced in 1988. It uses long probing equipment to translate movements

of the surgeon’s hands into a smaller space in the patient’s body (Figure 1b, 1c). It thus is minimally invasive,

and as such can result in less blood loss and less scarring than abdominal surgery. Some observational clinical

studies suggest that laparoscopic hysterectomy patients may have shorter lengths of stay in the hospital on

average than abdominal hysterectomy patients (Aarts et al., 2015). However, laparoscopic technology has

some drawbacks. For example, it features diminished dexterity and visibility for the surgeons. Visibility and

dexterity are important in order to, among other things, identify and track the ureter, so as not to injure it

during surgery, which is a common cause of adverse outcomes after hysterectomy (Rassier, 2022).

Third, different technologies for performing hysterectomy may have comparative advantages across dif-

ferent, heterogeneous patients. Some hysterectomy patients present with physicial complexities that make
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(a) Possible incisions for abdominal
– or, open – hysterectomy. Source:
Mayo Clinic.

(b) Possible incisions for laparoscopic
– or, straight-stick – hysterectomy.
Source: Kaiser Permanente.

(c) Examples of laparoscopic equip-
ment. Source: Stryker.

Figure 1: The long, slender nature of laparoscopic instruments allow hysterectomy to be performed with smaller
incisions, but it also limit’s the surgeon’s dexterity.

laparoscopic technology less advantageous. For example, laparoscopic hysterectomy is more difficult and

less feasible on patients with large uteruses, no history of vaginal births, histories of abdominal surgery,

and histories of cancer. (See American College of Obstetricians and Gynecologists (2017) and Walters and

Ferrando (2021) for evidence-based guidelines.)

Fourth, hysterectomy is an elective procedure. While it is used to treat many conditions that substan-

tially diminish quality of life and, in some cases, threaten life, these conditions are rarely emergent. Thus,

hysterectomy mode is likely to be chosen by weighing the comparative advantages of treatments in terms of

the patient’s clinical conditions and less likely than an emergent procedure to be chosen on some idiosyncratic

provider-side basis like which doctor with which preferences or experiences was on-call on a particular night.

Finally, relative price of laparoscopic surgery likely plays a minimal role in the choice over hysterectomy

methods. Hospital payments are made for Diagnosis-Related Groups (DRGs), and there are not separate

Medicare DRGs for laparoscopic versus abdominal surgery. Physicians reimbursements are based on a fee

schedule with respect to CPT codes. In 2018, Medicare payments for abdominal hysterectomies was $1042.

Payment for laparoscopic surgery depends on uterus size and whether tubes are removed. The laparoscopic

reimbursement was $ 1048 for uterus greater than 250 grams without tube removal, and $1249 with tub

removal, and it was $797 for uteruses less than 250 grams without tube removal, and $920 with removal.

3 Theory of Surgical Treatment Choice

Here I present a Roy (1951)-style model of patients and physicians jointly making treatment decisions. In this

setup, patients and physicians together decide which type of surgery for the patient to undergo, laparoscopic

(subscript L) or abdominal (subscript A) hysterectomy. They make this decision in order to maximize the
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patient’s utility6, which is primarily a weighted function of two adverse clinical outcomes, length of stay, S

and readmission rate, R, and the distance a patient would need to travel to undergo the surgical procedure,

TL or TA. This is in keeping with the models of Chandra and Staiger (2007, 2020), who consider treatment

decisions made to maximize patient survival. However, in my paper, I consider treatments that affect two

clinical outcomes and that might have comparative advantages for different outcomes. If treatments have

different comparative advantages over the two outcomes, then the choice will be affected by patients’ (and

physicians’) relative marginal disutilities for the two adverse clinical outcomes.

Length of stay and readmission rates are very plausible prominent features in the patient–physician

indifference curve. A longer length of stay in the hospital is undesirable to the patient and exposes the

patient to hospital-born infection. It is also likely correlated with the necessity for greater recuperation.

The readmission rate is plausibly related to the onset of complications of the surgery. These clinical care

outcomes are commonly studied in the medical and health services research literature comparing efficacy of

treatments and practice patterns, and they are of interest to health care policy makers, currently subject to

regulatory scrutiny under health care finance policy.

The model also incorporates the patient’s disutility of travel time to the facility for the procedure. A

patient’s distance to different hospitals is an important determinant of her choice of hospital. (Gaynor and

Vogt (2000) review some of the prior evidence.) Different hospitals have equipment and staffs with different

capabilities, so some hospitals perform laparoscopic surgery while other perform only abdominal surgery.

Thus, distance of a patient to hospitals with laparoscopic technology relative to hospitals performing just

open surgery affects her utility for laparoscopic surgery. This model feature will be used in the empirical

strategy (section 5) for identifying effects among marginal patients.

3.1 Model

Let there be patients whose heterogeneity in clinical conditions can be characterized as a random variable

θ that realizes values from zero to one. This might describe the physical complexity of a patient’s case,

with one representing more complex cases. Let the production of patient outcomes length of stay, S, and

readmission rate, R, under each treatment method j ∈ L,A, for a given value of complexity θ be:

Sj(θ,X,WS,j) = αj + βjθ + κS,jX +WS,j (1)

Rj(θ,X,WR,j) = γj + δjθ + κR,jX +WR,j (2)

6One could consider the physician in Ellis and McGuire (1986)’s model, with the parameter governing the weight the
physician places on patient health relative to hospital profits set so that the physician only cares about patient health.
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where all parameters are positive, X is a random vector of patient characteristics affecting the clinical out-

comes, and WS,j and WR,j are random variables of mean zero representing idiosyncratic factors determining

a patient’s adverse outcomes. Condition on X and the idiosyncratic terms.

The patient–physician pair’s joint indirect utility function depends on two adverse clinical outcomes – S

and R – and the patient’s distance or travel time to the hospital where procedure j is performed, Tj :

Uj(θ, Tj) = uB − ωSSj(θ)− ωRRj(θ)− ωTTj (3)

where uB is “bliss utility,” a maximum level of utility that could be achieved from the surgery but that is

generally unattainable.

Either one procedure type is performed for all patient types (i.e., all values of θ) or one procedure is

performed for only some values of θ. Let us assume that no procedure is performed for all patient types.

This is consistent with observations that both laparoscopic and open hysterectomies are performed within

surgical services markets. For a given value of Z ≡ TL−TA, the laparoscopic procedure yields higher utility

on one range of values of θ, and on the complementary interval, abdominal surgery yields higher utility. In

this model and those of Chandra and Staiger (2007, 2020), the partition of the type range into two intervals

on which each procedure dominates follows from the linear production functions, but a “single crossing” of

the utility functions with respect to θ does not require such functional form assumptions. Indeed, Roy (1951)

describes what is essentially a single-crossing without assuming functional forms of agents’ utility, merely

by assuming that the variance of outcomes of agents who made one choice is different from the variance of

outcomes among agents who made the other choice.7

If θ represents case complexity, I argue it is more plausible that low-θ patients experience higher utility

under laparoscopic surgery than under abdominal surgery and that abdominal surgery has a comparative

advantage among patients with high θ, conditional on Z (Figure 2). Laparoscopic equipment has less

dexterity and more limited visibility than abdominal surgery. Thus it is more difficult for surgeons to

suture, make incisions, or see the anatomy of patients with trickier physical presentations and is incapable

of performing some procedures like biopsies that accompany complex cases. For example, hysterectomy

patients with large uteruses, patients who did not deliver any births vaginally, patients with histories of

abdominal surgery, patients with history of cancer, and patients in other situations in which a specimen to

7The assumptions of the production functions here – namely, that outcomes under the two alternatives are linear with the
same-signed slopes but with the one production function’s slope steeper than the other – lead to similar predictions about
outcomes for marginal agents as Roy (1951)’s assumptions that the log Normal-distributed random variables representing
productivity in his two labor sectors are positively correlated with the fishing sector’s productivity over potential workers
having greater variance than the other. If the patient’s utility were over just one outcome, the change in utility of the marginal
patient when the nearest laparoscopic hospital is moved closer to her has the same sign as the change in the earnings of Roy’s
marginal worker when the (exogenous) price of fish increases.
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Figure 2: Utility of minimally invasive surgery and abdominal, or open, surgery as functions of patient type, θ.
Types of lower θ are less appropriate for laparoscopic surgery, perhaps because of patient physical complexity, for
example.

be removed is near another internal organ like the colon present the surgeon with anatomical complexities

for which surgery might benefit from more dexterity.

Additionally, assume that for all levels of θ,

SL(θ) < SA(θ) (4)

which is consistent which the observation that laparoscopic equipment’s smaller incisions are less invasive

than open surgery and thus should result is less blood loss, less scarring, and shorter recovery times.

3.2 Choices by Different Patient Types

This section shows how the utility functions under laparoscopic surgery and under abdominal surgery and

the adverse outcome production functions affect choices among patients with, alternatively, low and high θ

types. Derivations of the findings are in Appendix A.

Consider the indifference curve of patient type θ = 0 for fixed Z (Figure 4a) in terms of S and R, condi-

tional on X, and the random shocks WS,A, WS,L, WR,A and WR,L. Note that the slope of the indifference

curve with respect to S is m = − ωS

ωR
. Bliss utility, uB , travel time, Tj , and preference weight on travel time,

ωT , are encoded in the indifference curve’s R-intercept:

R(θ) =
uB − ωTTj

ωR
− ωS
ωR

S(θ) (5)

Each point represents a bundle of adverse clinical outcomes, and points L0 and A0 represent the bundles
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that type θ = 0 can achieve under the two production technologies available L and A, respectively. Highest

utility is achieved at the origin, and utility declines as S or R increases, conditional on (TL, TA). From the

assumption that low complexity cases choose L, Appendix A shows that the production possibilities must lie

on a line that is shallower than the indifference curve, and so type θ = 0 patients experience shorter lengths

of stay but greater readmission risk under laparoscopic surgery than under abdominal surgery (depicted in

Figure 4a). High-complexity, type θ = 1 patients choose abdominal surgery, under which they experience a

lesser readmission risk but longer length of stay (Figure 4b). Appendix A.3 shows that, for a given value of

the difference in distances, TL−TA, there exists a θ
∗ such that patients are indifferent between laparoscopic

and abdominal surgery.

3.3 Predictions about Outcomes among Patients on the Treatment Margin

There is one θ for a given Z = TL − TA such that the patient is indifferent between procedures. For a given

value of Z, call this θLA(Z) = θ∗ to simplify notation.

For a patient indifferent between laparoscopic and abdominal surgery, it is true that

ωS · (SA(θ∗)− SL(θ
∗))− ωT · Z = ωR · (RL(θ∗)−RA(θ

∗)) (6)

where θLA(Z) ≡ θ∗ is the value of θ for which a given value of Z = TL−TA ≥ 0 makes the patient indifferent.8

Appendices A.2 and A.3 show that it follows from the comparative advantage assumption (that low-θ

types choose laparoscopic surgery and high-θ types choose abdominal surgery) that the complexity type of

the patient who is indifferent, θ∗, decreases when Z increases. Let’s refer to the component of utility that is

affected by complexity type θ but excludes the disutility of travel time, uB − ωSS(θ) − ωRR(θ), as clinical

utility. Patients who are indifferent between the treatment methods when Z = 0 have less relative clinical

utility from laparoscopic surgery than patients who are indifferent for a large Z – i.e., for patients who are

indifferent when the laparoscopic hospital is much farther from their residence than the hospital without

laparoscopic surgery.

Now let’s analyze the difference in potential readmission rates for patients who are indifferent, i.e., for

whom Equation (6) holds. Recall the earlier assumption that SL(θ) < SA(θ) for all values of θ, because

laparoscopic surgery is always less invasive than abdominal surgery. The patient who is indifferent at Z = 0

8Recall that Z, the difference between a patient’s distance to her nearest laparoscopic-performing and hysterectomy-
performing hospital, TL, and the distance to her nearest hysterectomy-performing hospital, TA, is weakly positive. All
hysterectomy-performing hospitals perform abdominal surgery, but not all hysterectomy-performing hospitals perform laparo-
scopic surgery.
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must have a greater readmission rate under laparoscopic surgery than under abdominal surgery, i.e.:

RL
(
θLA(Z = 0)

)
−RA

(
θLA(Z = 0)

)
< 0 (7)

The changes in the differences in potential outcomes among indifferent patients when Z increases, or

equivalently, when considering patients with greater relative clinical utility from laparoscopic surgery, are:

d [SL(θ
∗)− SA(θ

∗)]

dZ
= ωT ·

(
βL − βA

ωS(βA − βL)− ωR(δL − δA)

)
(8)

d [RL(θ
∗)−RA(θ

∗)]

dZ
= ωT ·

(
δL − δA

ωS(βA − βL)− ωR(δL − δA)

)
(9)

It follows from the comparative advantage assumption that the two derivatives cannot both be positive (see

Appendix A.4).

In summary, the model says that among marginal patients, the relative readmission rate under laparo-

scopic surgery, RL(θ
∗)−RA(θ

∗), will be positive for marginal patients with the least relative clinical utility

for the laparoscopic method, if not for marginal patients of all types. The differences in potential lengths of

stay, SL(θ
∗) − SA(θ

∗), (which is taken to always be negative) and the differences in potential readmission

rates will each be either increasing or decreasing with respect to patient’s relative clinical utility of laparo-

scopic surgery, but they cannot both be decreasing. If they were, then laparoscopic-resistant patients would

experience both greater improvements in length of stay and lesser deteriments from readmission risk than

laparoscopic-prone patients.

3.3.1 Estimands: Empirical Implications of the Model

What empirical questions does this theory lead to? This subsection shows that the predictions about

outcomes among indifferent patients with a given level of unobserved resistance to laparoscopic surgery (i.e.,

a given level of relative health “costs” to laparoscopic surgery unobserved by the analyst) leads to predictions

about marginal treatment effects and, in turn, local average treatment effects. Consider the relative utility

under laparoscopic surgery, L, versus under abdominal surgery, A, rearranging terms:
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UL(θ, TL, X,WS,L,WR,L)− UA(θ, TA, X,WS,A,WR,A)

=ωS(αL − αA +WS,L −WS,A) + ωR(γL − γA +WR,L −WR,A) + [ωS(βA − βL) + ωR(δL − δA)]θ︸ ︷︷ ︸
≡V , unobserved

+ ωT (TL − TA) + [ωS(κS,L − κS,A) + ωR(κR,L − κR,A)]X︸ ︷︷ ︸
≡ µ(Z,X), a function of observables

(10)

The indirect utility determining whether a patient with covariates X and excluded instrument value

Z = TL − TA undergoes laparoscopic surgery can be represented as a sum of a function of observed case

characteristics, µ(Z,X), and an additively separate unobserved term represented by random variable V .

The indicator function for whether patients with (X,Z, V ) undergo laparoscopic surgery (as opposed to

abdominal surgery) is

DL(X,Z, V ) = 1 [µ(Z,X)− V ≥ 0] (11)

where V has some distribution and arbitrarily depends on θ and the idiosyncratic outcome shocks, WS,L,

WR,L, WS,A, and WR,A. Equivalently, it depends on all factors affecting outcomes that aren’t included in

X. In my empirical setting, X includes a number of comorbidities and gynecological conditions recorded in

Medicare claims (as I will detail in the data section, Section 4). Therefore, V represents determinants of the

outcomes and, in turn, of the choices that I do not observe in the Medicare claims: uterus weight, history of

vaginal births, history of abdominal surgery, and other anatomical conditions that I do not observe but that

the physician and patient do observe and that affect the efficacy of laparoscopic surgery. V can be thought

of as the unobserved (to the analyst) net “health cost” or “resistance” to choosing laparoscopic surgery.

Following the literature on selection on unobservable heterogeneity (for example, Carneiro, Heckman and

Vytlacil, 2011), let UD denote the cumulative distribution function of V , FV (V ), so it represents a case’s

percentile of unobserved “resistance” to the laparoscopic choice. Now we may consider a causal parameter of

interest called the marginal treatment effect on outcome Y – first proposed by Björklund and Moffitt (1987)

and further developed by Heckman and Vytlacil (1999, 2000, 2005, 2007). The marginal treatment effect of

treatment L, relative to treatment A, on outcome Y is defined as

MTEY (x, uD) ≡ E[YL − YA|X = x, UD = uD] (12)

14



and it is evaluated at a vector of particular covariate values, x, and at a particular percentile of unobserved

“cost” of or resistance to treatment, uD, or is commonly called, “resistance” to the laparoscopic treatment.

Different instrument values identify marginal treatment effects among patients with different levels of θ.

Recall that θ is a key aspect of the theory which represents patient complexity, which makes a patient more

resistant to laparoscopic surgery. Patients with lower θ have lesser V and thus a lesser UD. Consider the

propensity score for choosing laparoscopic surgery as a function of covariates and an excluded instrument,

P (z, x) ≡ Pr(DL = 1|Z = z,X = x)9. Note that UD and P (X,Z) are monotonic transformations of V and

µ(Z,X), respectively. A patient who is at a lower percentile of unobserved resistance to the laparoscopic

procedure, UD, requires a lower percentile of observed net benefit, P (Z,X) – induced by a greater relative

distance to the laparoscopic surgery-performing hospital, Z – in order to be indifferent between laparoscopic

surgery and abdominal surgery. Therefore, patients with lower θ have lesser V and lesser UD, and thus their

marginal treatment effects are identified by lesser values of P induced by greater relative distances, Z. This

also demonstrates why the marginal treatment effect is sometimes described as the difference in potential

outcomes among patients who have values of (Z,X) such that their unobserved resistance to laparoscopic

treatment, uD, is equal to their observed net benefit of laparoscopic surgery, P (Z = z,X = x) = p, so

MTEY (x, uD) =MTEY (x, p).

With causal quantities defined and identification explained, let us now turn to the empirical implications

of the model. Let the notation implicitly condition on X. The assumption made that SL(θ) < SA(θ) for all

θ implies that empirically the marginal treatment effect on length of stay is

MTES(uD) < 0 (13)

for any given uD. Equation (7) predicts that the marginal treatment effect on readmission risk among

patients with the greatest resistance to laparoscopic surgery is positive, i.e.

MTER(P (Z = 0)) > 0 (14)

Recall that patients at the highest percentile of resistance (i.e., greatest UD, 1 by definition) are identified

and made indifferent between surgery alternatives by the lowest instrument value, Z = 0. Since marginal

treatment effects on readmissions is positive for the highest resistance patients, if MTER(uD) is continuous,

9This is sometimes characterized as the patient’s mean scale utility value.
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Figure 3: A hypothetical pattern of marginal treatment effects on length of stay (S) and on readmissions (R). Cases
on the left are more prone to laparoscopic surgery: they have lesser values of θ and are made indifferent between
the two procedures with greater values of the excluded instrument, relative distance, Z. Patients on the right are
laparoscopic resistant: they have greater θ and are made indifferent with greater values of Z. The vertical axis is
the magnitude of marginal treatment effects. The red line plots the marginal treatment effects on readmission with
respect to resistance, RL(θ

∗)−RA(θ
∗), and the blue line plots the marginal treatment effects on length of stay with

respect to resistance, SL(θ
∗)− SA(θ

∗). The model assumes that SL(θ
∗)− SA(θ

∗) is negative for all θ, and it implies
that RL(θ

∗) − RA(θ
∗) is positive for at least the most resistant patients. Under the model, the marginal treatment

effects trends may be both upward-sloping, or one may be upward-sloping and the other downward-sloping, but they
cannot both be downward-sloping (as depicted here). If that were so, the laparoscopic-resistant cases would have
lesser adverse effects from laparoscopic surgery than the laparoscopic-prone patients.

then

MTER(uD) > 0 (15)

for an interval uD ∈
[
u0D, P (Z = 0)

]
if ∂MTER(uD)

∂uD
> 0, where u0D is some value less than one, or for all uD

otherwise. In other words, the marginal treatment effects on readmissions should be positive for the patients

with the greatest resistance to treatment, if not all patients.

The analysis resulting in Equation (8) and Equation (9) also predicts that

∂MTER(uD)

∂uD
≷ 0 (16)

∂MTES(uD)

∂uD
≷ 0 (17)

as long as they are not both positive, for any uD. Both derivatives being positive would contradict the

meaning of UD as the percentile of unobserved resistance to laparoscopic surgery. It would mean that

patients with greater unobserved resistance to laparoscopic surgery, UD, experienced both greater detriment

from laparoscopic surgery (more positive MTER) and lesser benefit from laparoscopic surgery (less negative

MTES).
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The marginal treatment effects are related to the local average treatment effect on outcome Y ,

LATEY (p0, p1) =
Cov(Y,Z)

Cov(Z,DL)

for continuous instrument Z whose values induce a range of propensity scores from p0 to p1.
10 As discussed

in the context of marginal treatment effects, a particular realized value of Z induces a propensity score p

and identifies marginal treatment effects among patients with a uD equal to p. Heckman and Vytlacil (1999,

2005) and Heckman, Urzua and Vytlacil (2006) show that the local average treatment effect on outcome Y

for an instrument whose values induce a range of propensity scores from p0 to p1, is a weighted combination

of marginal treatment effects:

LATEY (p0, p1) =

∫ p1

p0

MTEY (p)φZIV (uDL
) dp (18)

where φZIV (uD) are the weights for each level of uD.
11

This leads to the predictions

LATER (p0, p1) > 0 LATES (p0, p1) < 0 (19)

for some instrument that induces changes in treatment decisions among patients with propensity scores in

the range of p0 to p1.

To test the theory’s predictions about marginal patients in my empirical setting, I will first estimate the

local average treatment effect as an approximation of the marginal treatment effects, and then I will estimate

the marginal treatment effects for different levels of UD under several model specifications.

10It is interpreted as the difference in potential outcomes among the compliers of the instrument, that is, among patients who
would choose DL = 1 for some values of Z and would choose DL = 0 for other values. The denominator is the first stage, and
the numerator is the reduced form or the intent-to-treat effect.

11The weights relating the MTEs to the LATE are:

φZ
IV (uD) =

E [Z − E[Z] | P (Z) > uD]Pr (P (Z) > uD)

Cov (Z,D)

Certain observations are weighted more heavily if their treatment covaries with particular ranges of the instrument more. The
weights integrate to one, can be negative if the instrument does not satisfy monotonicity, and can be consistently estimated
from the sample.
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3.4 Revelation of Preferences and Objectives

Assuming that the choice of hysterectomy mode is made jointly by a patient and physician who are trying to

maximize patient utility over the two clinical outcomes and travel time to surgery, the model shows how to

identify patients’ and physicians’ joint marginal rate of substitution. Since the slope of the indifference curve

for a given tuple (θ, Z) is equal to the marginal rate of substitution, MRSS,R = (∂U/∂S)/(∂U/∂R) = − ωS

ωR
,

the ratio of the marginal treatment effects of the two outcomes equals the marginal rate of substitution:

MRSS,R(θ) = m =
RA(θ)−RL(θ)

SA(θ)− SL(θ)
(20)

for each θ. Thus, in the population, the marginal rate of substitution for patients with unobserved resistance

to laparoscopic surgery uD is identified by

MRSS,R(uD) =
MTER(uD)

MTES(uD)
(21)

the ratio of the marginal treatment effects on readmissions and on length of stay. Because the local average

treatment effect is a weighted combination of the marginal treatment effects identified by the instrument,

I also approximate the marginal rate of substitution across case complexity types using the local average

treatment effect. If the marginal rate of substitution is the same across patient types, which would happen

if indifferences were linear, then

MRSS,R =
LATER
LATES

(22)

the ratio of local average treatment effects is the marginal rate of substitution for any patient type. Otherwise,

it is a weighted combination of marginal rates of substitution across patients types.

I should make an important caveat here. The finding that the ratio of the marginal effects identifies the

marginal rate of substitution for patients depends on providers fully and accurately incorporating patient

preferences into their own utility function. Sepucha and Mulley (2009) review some potential reasons why

physicians might not understand or implement a given patient’s preferences. Additionally, this identification

requires there to be no other provider-side factors influencing the choice of hysterectomy mode. For example,

hospitals’ profit functions, or in the case of not-for-profit hospitals, their utility functions (Pauly and Redisch,
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1973), could incorporate patient length of stay or readmission risk. Patient length of stay could affect hospital

profit margins on episode-based or capitated payment, and readmission risk could affect patient’s quality

measures which could in turn affect hospitals’ bargaining leverage with insurers. (However, at the time of my

observations, Medicare did not have financial penalties for readmissions.) If hospitals are able to influence

surgical mode through allocation of operating room equipment, staff, and time or through other tacit ways,

the “marginal rate of substitution” identified by the ratio in Equation (20) does not merely identify the

patient marginal rate of substitution – i.e. some function of patients’ relative elasticities of demand with

respect to clinical outcomes – but rather the ratio would reflect preferences and incentives throughout the

health care system.12

3.5 Predictions about Difference in Mean Outcomes between Treatment Groups

This section shows that the model makes predictions about differences in mean outcomes between patients

making different surgical mode choices. These constitute an additional side hypothesis whose confirmation

would further support the model. Taken together with the predictions for marginal patients, it also makes

an interesting point that behavior under this model is consistent with a local average treatment effect on

readmission being a different sign than the estimate of the difference in means. In other words, the estimated

sign of the effect of laparoscopic surgery on readmissions could be different in a two-staged least squares

regression that in an ordinary least squares regression. Conventionally, a difference in signs estimated form

these two types of regressions is considered a cause for concern for the estimation’s validity, but under this

model it is plausibly expected with a valid instrument.

The difference in means of length of stay between laparoscopic patients and abdominal patients is:

S̄L − S̄A < 0 (23)

So the ordinary least squares estimate of the effect of laparoscopic surgery, relative to abdominal surgery,

on length of stay, among patients who undergo either laparoscopic or abdominal surgery will be positive.

The sign of the difference between the mean readmission rate among laparoscopic patients and the

mean readmission rate among abdominal patients is ambiguous under the presented assumptions. It is

dependent on an interaction of the differences between technologies in readmission rates among patients

without complications, in the degrees to which readmission rates increase with respect to θ, and the shares

12Differences in physician reimbursement or physician ergonomics between the modes, for example, could affect the decision,
and these factors would be incorporated in the intercepts of the linear indifference curves considered here, rather than the slope,
unless these technology-specific factors in the physicians’ utility were correlated with length of stay or readmission rate. (See
Newhouse (1996) for a literature review on provider response to reimbursement contract design, and see McDonald et al. (2014)
for a small survey of gynecologic oncologists on ergonomics of different surgery types.)
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(a) Patients of complexity type θ = 0 (b) Patients of complexity type θ = 1

(c) Patients of complexity type θ = θ∗ such that
the patient is indifferent between options.

(d) Indifference curves and production possibilities
sets for patient types 0, θ∗, and 1

Figure 4: Indifference curves and production sets for patients of three different complexity types, θ = 0, θ = θ∗

for the θ∗ ∈ (0, 1) such that patients are indifferent between laparoscopic and abdominal surgery, and θ = 1. The
production set for patient type θ is composed of two bundles of patient outcomes labeled Lθ if laparoscopic surgery
is chosen and Aθ if abdominal surgery is chosen. Bundles are composed of a readmission rate R and a length of
stay in the hospital, S. Utility is highest at the origin point, uB , and decreases outward, i.e., up and to the right.
Bundles chosen by laparoscopic patients will fall in the area around the blue line connecting L0 and Lθ∗ in Panel D,
and bundles chosen by abdominal patients will fall around the red line connecting Aθ∗ and A1.

of patients of each technology choice who are of different values of θ. Appendix A.5 goes into more detail and

analyzes the possible cases. The upshot is, the sign of R̄L−R̄A is ambiguous. Whether the difference in means

is positive or negative is not dependent on the sign of the treatment effect among the marginal patients,

whose treatment effect would be approximated by the local average treatment effect. In other words, in this

selection setting, theory allows for the sign of the local average treatment effect to be different from the sign

of the ordinary least squares estimate of the treatment effect. This departs from the conventional notion that

a contradiction between the sign of the estimated local average treatment effect and the sign of the ordinary

least squares estimate of the average treatment effect is a cause for concern about the instrumental variable

regression’s validity. Theory predicts that the signs will be different under certain reasonable parameter

assumptions and distributional assumptions.
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3.5.1 Estimands

Finally, to test the model’s side prediction about the difference in the average length of stay among the

laparoscopic patients and among the abdominal patients in Equation (23), I estimate the difference in

expected lengths of stay among patients with the same covariates, and I predict it to be

E[S|DL = 1, X]− E[S|DL = 0, X] < 0 (24)

The prediction for the difference in the expected readmission rates

E[R|DL = 1, X]− E[R|DL = 0, X] (25)

is ambiguous.

4 Data Description

Testing this paper’s theory requires estimating the impacts of the choice of surgical technology on patient

outcomes. For this, I require data on patients who underwent total hysterectomy performed by different

physicians, in different hospitals, in different procedure markets, and I require detailed information about

patient characteristics, the physicians and hospitals that provided the surgery, and patient diagnostic infor-

mation recorded during the stay of the surgery and in subsequent encounters with health care providers.

Medicare claims data is well suited for this investigation. I analyze all Medicare inpatient claims through-

out the United States from 2007 to 2008. This is to say that I observe virtually all inpatient stays among

Americans age 65 and older, of all different demographics and clinical characteristics, in all various geo-

graphical settings and hospital market structures, treated by physicians with all different experiences and

training. I use data from 2007 to 2008 because at this time, almost all Medicare-covered total hysterectomies

were performed either laparoscopically or abdominally.

There were very few Medicare outpatient claims for hysterectomy in this period (141 hysterectomies in

2007, including total, subtotal, and radical hysterectomies). The few that I observe may be part of a different

data generating process than the inpatient hysterectomies and are a very small segment of the hysterectomies

in the population, so I do not include them in my analysis here.

I observe 60,889 claims for total hysterectomies from 2007 to 2008, six percent of which are for laparoscopic

hysterectomies. Each claim includes a unique identifier for patients, allowing me to see information from
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multiple health care encounters for a given patient, such as whether a patient was readmitted to a hospital

after a hysterectomy. The patient identifier also allows linking a claim to Medicare’ beneficiary summary

file, which contains demographic information and the Zip code of the patient’s resident. It also includes

ICD-9 procedure codes and diagnosis codes, providing detailed, standardized information about the clinical

characteristics of the patients as well as the care provided. ICD-9 procedure codes include detailed description

of the type of surgery performed, including whether a hysterectomy was open/abdominal, laparoscopic, or

robotically-assisted.13 The claim also indicates the dates of admission and discharge, allowing for calculation

of the patient’s length of stay in the hospital. Finally, the claims also detail the Zip codes of the hospitals

and of the patients, facilitating my identification strategy that relies on comparing a patient’s distance to

her nearest hospital with minimally invasive surgery to her nearest hospital that does not perform minimally

invasive surgery.14

From the claims, I derive my outcomes of interest. For each total hysterectomy, I build an indicator

variable for whether the patient’s length of stay in the hospital was two or more days and an indicator

variable whether the patient had an inpatient claim in the 10 days since the hysterectomy. I choose use

a dichotomous measure of the length of stay because the distribution of length of stay has much of its

probability mass around one or two days and a long right tail (see Appendix Figure 11). Thus, much of the

possible potential lengths of stay are around two days. Additionally, some unusual cases with long length of

stay could have outsized influence on the treatment-specific means, so making inferences about mean length

of stay may not be as informative as making inference about the frequency with which length of stay is above

a common realization.

In order to condition my estimates of course of treatment on outcomes on possibly confounding factors,

I augment this data with information from a few sources. To control for characteristics of the patient’s

neighborhood which may be correlated with their own socioeconomic characteristics, I collect Zip Code

Tabulation Area-level data on race, income, rates of participation in public assistance and public insurance

programs, and household income from the U.S. Census Bureau’s American Community Survey’s 5-Year

Estimates from 2008 – 2012. I also use hospital quality measures from Medicare’s Hospital Compare program.

Finally, I observe some hospital characteristics through Medicare’s Provider of Service (POS) file.15 The

13The ICD-9 procedure code for robotically-assisted surgery was not introduced until the fourth quarter of 2008; prior to
that point, robotically-assisted procedures were coded as laparoscopic procedures. However, according to these claims, only 5.2
% of hysterectomy claims in that quarter were performed in a robotically-assisted manner, 5.7% in the first quarter of 2009,
7.8% in the second quarter, and 10.5% in the first quarter of 2010 (Figure 10 in the appendix). Even though I do not directly
observe whether a given hysterectomy in 2007 or the beginning of 2008 was performed robotically, I infer from this trend that
it is probably true that very few of the hysterectomies coded as laparoscopic from 2007 to 2008 were performed robotically.

14I calculate the distances between the centroids of the Census Bureau’s Zip code tabulation areas, the latitude and longitudes
of which are calculated and made publicly available by UDS Mapper (Bureau of Primary Health Care at the U.S. Health
Resources and Services Administration; John Snow, Inc.; and the American Academy of Family Physicians; available at
https://udsmapper.org), using the distHaversine function for R.

15I use a version of the file cleaned and made publicly available by Adam Sacarny, http://sacarny.com/data/.
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specific covariates I control for are detailed in the section on empirical strategy.

I have several groupings of covariates, which I add sequentially to the regression specification to see how

robust the estimate is to potential confounding factors. Demographic controls include indicators for whether

the patient is Black, a race other than white or Black, under 65 years of age, or over 74 years of age. Clinical

controls include the Charlson comorbidity index as well as indicators for whether the patient had diabetes,

had a malignant neoplasm, had a non-malignant neoplasm, had a body mass index of 30 or over (considered

obese), had a history of cancer indicated on the hysterectomy claim, had uterine fibroids, had endometriosis,

had pelvic organ prolapse, had female genital bleeding, had post-menopausal bleeding, had an ovarian cyst,

had female genital pain, or had peripheral adhesions. Variables describing the Zip code of the patient’s

residence include the white percent of residents, the college-educated percent of residents, the percent of

residents with public assistance (including cash or nutritional assistance), the median household income, and

the percent of residents on Medicaid. The hospital quality variables include how many hysterectomies the

hospital performed that year, a quality measure on the appropriate use of antibiotics, a quality measure on

the prevention of blood clots in heart patients, and the overall Consumer Assessment of Healthcare Providers

& Systems (CAHPS) score.

Table 1 show how patient diagnoses, comorbidities, and demographics vary by hysterectomy mode.
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Table 1: Means and Standard Deviations of Case Characteristics, by Total Hysterectomy Approach

Laparoscopic Abdominal
Mean Std. Dev. Mean Std Dev.

Percent with Any 10-Day Readmission 0.0402 0.196 0.0589 0.236
Percent with Length of Stay ≥ 2 Days 0.522 0.500 0.982 0.135
White 0.867 0.339 0.817 0.387
Black 0.0925 0.290 0.137 0.344
Not Black or white 0.0402 0.196 0.0461 0.210
Any Months on HMO 0.0289 0.167 0.0409 0.198
Diabetes 0.170 0.375 0.175 0.380
Malignant Neoplasm 0.505 0.500 0.463 0.499
Non-Malignant Neoplasm 0.242 0.428 0.327 0.469
BMI30+ 0.0387 0.193 0.0300 0.171
History of Cancer 0.104 0.305 0.0762 0.265
Uterine Fibroid 0.239 0.427 0.287 0.452
Endometriosis 0.103 0.304 0.113 0.317
Pelvic Organ Prolapse 0.106 0.308 0.0744 0.263
Female Genital Bleeding 0.108 0.311 0.129 0.335
Postmenopausal Bleeding 0.113 0.317 0.0996 0.299
Other Ovarian Cyst 0.0753 0.264 0.0849 0.279
Female Genital Pain 0.135 0.342 0.128 0.334
Pelvic peritoneal adhesions 0.0990 0.299 0.100 0.300
Zip Percent White 0.798 0.203 0.792 0.221
Zip Percent College 0.382 0.173 0.336 0.154
Zip Percent Public Cash or Nutrition Assistance 0.114 0.0866 0.132 0.0884
Zip Median Household Income 59297.1 25353.3 53306.8 21589.3
Zip Percent Medicaid 0.106 0.0667 0.116 0.0686
Hospital Num. Hyst.s 62.63 44.07 52.29 44.40
Hospital Quality Measure: Proper Clot Prevention 0.878 0.0889 0.861 0.106
Hospital Quality Measure: Proper Antibiotic Use 0.913 0.0764 0.907 0.0872
Hospital Patient Satisfaction Score 2.549 0.115 2.534 0.117

Means for continuous variables and prevalence rates for indicator variables across hysterectomy patients, by
type of hysterectomy. These procedure-level statistics describe hysterectomy outcomes, the demographic and
clinical characteristics of the patients, the Zip codes of the patients’ residences, and the hospitals where the
procedures were performed. LOS is length of stay, MSA is Metropolitan Statistical Area, HMO is Medicare
Advantage, and BMI 30+ is an indicator for Body Mass Index equalling or exceeding 30 (indicating obesity).

5 Empirical Strategy

In this section, I describe the excluded instrument that I use to identify the local average treatment effect

and the marginal treatment effects. Next, I present the estimation methods and models. I consider the

estimates of the local average treatment effects to be my main estimation strategy. Marginal treatment

effect estimation requires estimating from smaller cells of data, so it is less precise than the two-stage least

squares estimation. I consider the marginal treatment effects to constitute confirmatory, suggestive evidence.

This section also shows I use the local and marginal effects to estimate the marginal rate of substitution.
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5.1 Instrumental Variable Definition and Validity

In order to identify the marginal treatment effects or the local average treatment effect, I need an instrumental

variable that affects the choice of hysterectomy approach but is excluded from the outcome models. The

excluded instrument I use, Z, is

Z = TL − TA (26)

the difference between the distance to a patient’s nearest hysterectomy-performing hospital that performs

laparoscopic surgery and the distance to her nearest hospital performing hysterectomy. Its distribution is

presented in Appendix Table 7. This instrument meets the three criteria for the two-stage least squares

estimator to identify the local average treatment effect among the compliers: relevance, exclusivity, and

monotonicity (Imbens and Angrist, 1994; Angrist, Imbens and Rubin, 1996; Imbens and Rubin, 1997). Sta-

tistical inference of the results also requires that the instrument is not weak. To estimate marginal treatment

effects, as well, instruments must satisfy relevance (or, the rank condition), exclusivity (or, independence),

and monotonicity (or, uniformity) (Heckman, Urzua and Vytlacil, 2006).

First, I show evidence from the first stage that the instrument is relevant and not weak. I estimate

the conditional correlation of Z and DL, the indicator for whether the hysterectomy was performed laparo-

scopically, on all total hysterectomies in 2007 and 2008, when few robotically assisted hysterectomies were

performed.

Appendix Table 8 presents the first stage results. Across all specifications, the instrument is very stable

and suggests that reducing the difference between the distance to the nearest laparoscopic hospital and

the distance to the nearest hospital without laparoscopic surgery by 10 miles – i.e., making the nearest

laparoscopic hospital closer relative to the nearest hospital without – increases the compliers’ likelihood to

undergo laparoscopic rather than abdominal hysterectomy by 0.5 percentage points. In each specification,

the effective F statistic far exceeds the critical values. 16 The negative relationship between relative distance

and choice of hysterectomy procedure is also shown graphically in the binned scatterplots of Figure 12.

Second, the instrument arguably satisfies the exclusion restriction. A patient’s relative distance to a

16Following the advice of Andrews, Stock and Sun (2019), I conduct a weak instrument test that is robust to heteroskedasticity
proposed by Montiel Olea and Pflueger (2013) and implemented by Pflueger and Wang (2015). Their test statistic is compared
against a two-stage least squares/limited information maximum likelihood critical value either for 5% bias, which is 37.418
in my sample, or the value for 10% bias, which is 23.109. When there is just one endogenous variable, as in my case, the
Olea-Montiel Pflueger test statistic is equivalent to the Kleibergen and Paap (2006) statistic. This latter test is packaged with
the common Stata commands ivreg2 and Correia (2018)’s ivreghdfe. Evidence strongly suggests that my instrument is not
weak. However, note that Andrews, Stock and Sun (2019) advise that even if a set of instruments should fail the appropriate
test, that the instrument should not be discarded due to its weakness. Instead, they write that analysis with the instrument
should proceed with weak instrument-robust inference methods.
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hospital performing laparoscopic surgery arguably affects hysterectomy outcomes only through its effect

on the patient’s choice of hospital and whether that hospitals perform laparoscopic surgery. Hadley and

Cunningham (2004) raise concerns that the effect of distance to care on a patient’s choice of care may be

confounded by socioeconomic patient characteristics correlated with distance and health. If relative distance

were associated with demographic and clinical characteristics, the validity of this assumption would be in

doubt. However, Table 9 shows that patients in the top half of the relative distance instrument’s distribution

have similar demographic and clinical characteristics as patients in the bottom half of the distribution. For

further evidence for or against the independence assumption, I look for associations between the instrument

and clinical- and socioeconomic-based predictions of five adverse outcomes: 10-day readmissions, 90-day

readmissions, lengths of stay of two or more days, and lengths of stay of three or more days, and I show

that controlling for other observed patient characteristics and Hospital Referral Region fixed effects, the

associations are weak and less in magnitude than the reduced form effects of the instruments on adverse

outcomes. First, I predict adverse outcomes using demographic, clinical, and neighborhood characteristics.

Then I inspect binned scatterplots of the instrument against the fitted values of the adverse outcome rates,

in Appendix Figure 14 and Figure 15. The plotted associations are conditional on patients’ distance to any

hospital and on four patient Zip-code characteristics, the percent of persons in the Zip code who are white,

the percent of persons with a college degree, the percent of persons on Medicaid, and the median household

income. The point estimates are small in comparison to the corresponding reduced form correlations between

the adverse outcomes and the instrument, which are presented in Appendix Table 11 through Table 14, for all

outcomes except for any 90-day readmission (in which case the reduced form effect has a similar magnitude

to the association between the instrument and the predicted outcome). For example, predicted 10-day

readmissions has a conditional correlation with relative distance of −0.00003, which is one third of the

reduced form effect of relative distance on 10-day readmissions, −0.00009. Prediction of a length of stay

of two or more days has a conditional correlation with the instrument of 0.00003, while the corresponding

reduced form effect is 0.00022. This suggests that even if the instrument were associated with adverse

outcomes of interest through some channel besides the procedure choice, such a confounding association is

likely much smaller than the causal effects of interest and would not likely affect the qualitative estimates

of the local average treatment effects.

Third, the instrument likely satisfies monotonicity and uniformity. Increasing the relative distance to a

laparoscopic hospital arguably weakly decreases the patient’s propensity to undergo laparoscopic surgery,

as opposed to abdominal surgery, and in no case would not increase the propensity. This is demonstrated

in the Appendix in Table 15. I estimate the first stage on several cells of patients by demographics and by

diagnoses, following an approach used in the “judge IV” literature (e.g., Arnold, Dobbie and Yang, 2018;
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Bhuller, Dahl, Løken and Mogstad, 2020) and in Chan, Card and Taylor (2022). In each case, the estimated

effect of the distance instrument on the choice of laparoscopic hysterectomy is qualitatively the same and

quantitatively similar, strongly suggesting that there are no defiers of the instrument, and the local average

treatment effect identifies the treatment effect among the compliers only.

5.2 Estimation

This subsection presents the estimation methods used to estimate the local average treatment effects and

the marginal treatment effects.

5.2.1 Estimating Local Average Treatment Effects

I estimate the local average treatment effect using a two-stage least squares estimator, where the first and

second stages are

Y = ρY,0 + ρY,1DL + ρY,2X + ϵY (27)

DL = π0 + π1Z + π2X + ν (28)

where DL is a random indicator for whether a hysterectomy was performed laparoscopically (rather than

abdominally), Z is the excluded instrument described above that characterizes how much farther the nearest

laparoscopic hospital is to a patient than the nearest hospital, X is a random vector of covariates, and Y is

random variable representing a clinical outcome of the hysterectomy. In alternative regression specifications,

the outcome is an indicator for whether the surgery resulted in any 10-day all-cause readmission, and an

indicator for whether the hysterectomy inpatient stay was 2 or more days. The random variables ν, ϵR,

and ϵS represent idiosyncratic shocks. I list the demographic, clinical Zip-level, and hospital covariates in

Section 4. I model the standard errors of two-stage least squares estimators assuming that there is clustering

of outcomes at the hospital level.

5.2.2 Estimating Marginal Treatment Effects across Heterogeneous Patients

I estimate the marginal treatment effects using the two common estimation methods, the local instrumental

variables method and the separate method. The marginal treatment effect can be re-written as:

E[YL − YA|X = x, UD = uD] = κL,Y x− κA,Y x+ E[WY,L −WY,A|UD = uD] (29)
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for outcome Y , which alternatingly is the long length of stay indicator or the readmission indicator. WY,L

and WY,A are the idiosyncratic shocks to potential outcomes YL, under L, and YA, under A, respectively.

Each method involves estimating an outcome model that includes an additively separable component that

represents unobserved heterogeneity:

E[Y |X = x, UD = uD] = κA,Y x+ px(κL,Y − κA,Y ) +KY (p) (30)

where KY (p) = pE[WY,L −WY,A|UD ≤ p], the unobserved “essential heterogeneity” in the outcome that is

correlated with the potential utilities under each alternative.17 The true distribution of KY (p) is unknown,

and the function KY (p) could be nonlinear. Thus, the outcome is alternatively modeled parametrically

in terms of the unobserved term and semiparametrically (partially linear), in keeping with practices in

the literature. The four parametric specifications are (1) modeling KY (p) as Normal, (2 – 4) modeling

kY (p) = K ′(p) as a first-, second-, and then third-degree polynomial in p.

The semiparametric specifications model Y as an additively separable model of two components, (1) a

nonlinear function of p, KY (p), and (2) the linear combination κA,YX + pX(κL,Y − κA,Y ). Estimation of

KY (p) proceeds as follows. The residuals êY , êX , and êXp are acquired by regressing Y , X, and Xp each on

p by local linear regression with the Epanechnikov kernel and alternative bandwidths of 0.01, 0.02, 0.03, and

0.05. The double residual regression is due to Robinson (1988) and modified by Heckman, Ichimura and Todd

(1997). Next, the κA,Y and κL,Y are estimated by regressing êY on êX and êXp. Y −Xκ̂A −X (κ̂L − κ̂A) p

is in turn regressed on p by second-degree local polynomial regression with the Epanechnikov kernel and the

bandwidth chosen by a plug-in estimator for a rule by Fan and Gijbels (1995). This yields K̂Y (p), whose

derivative is taken to construct the marginal treatment effect with the estimates for the kappas. A detailed

description of this is in the appendix of Heckman, Urzua and Vytlacil (2006).

Because the unobserved heterogeneity is a function of the propensity score, each method entails estimating

a propensity score for undergoing laparoscopic surgery, as opposed to undergoing abdominal surgery, as a

probit function of covariates and the excluded instrument. The marginal treatment effects are only identified

where there is overlap of the instrument-induced propensity scores. I model the propensity score as a probit of

almost the entire set of covariates used in the ordinary least squares and two-stage least squares regressions.18

The local instrumental variable method due to Heckman and Vytlacil (1999) and Heckman and Vytlacil

17Recall that p = P (Z,X) is the propensity score induced by relative distance instrument Z and UD is the patient’s percentile
of unobserved resistance to the laparoscopic alternative.

18Hospital quality measures were not available for all hospitals in my dataset. In the interest of maintaining the sample
size for the information-intensive marginal treatment effect estimation, I omit these variables from the set of covariates in this
section of analysis.
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(2007) is to estimate E[Y |x, p] using one of the parametric or semiparametric models described above and

take the derivative with respect to the propensity score, p.

In the so-called separate approach developed by Heckman and Vytlacil (2007) and Brinch, Mogstad and

Wiswall (2017), the terms reflecting unobserved heterogeneity and the coefficients from the two separate

potential outcome models

E[YL|X = x, UD = uD] = κL,Y x+KL(p) (31)

E[YA|X = x, UD = uD] = κA,Y x+KA(p) (32)

are estimated separately among laparoscopic patients and among abdominal patients, respectively. Then the

marginal treatment effect at p is calculated by subtracting the two estimated potential outcomes at mean x.

I implement both the local instrumental variable method and the separate method using software by

Andresen (2018). I estimate cluster-robust standard errors through 100 bootstrap repetitions with resampling

over the hospitals (Cameron and Trivedi, 2005).

5.3 Marginal Rate of Substitution: Estimation and Inference

The model in Section 3 shows that the marginal rate of substitution among patients with resistance to la-

paroscopic surgery uD is identified by Equation 20, the ratio of the marginal treatment effect on readmissions

to the effect on length of stay. Thus, I estimate the marginal rate of substitution by estimating the marginal

treatment effects and plug in:

M̂RS(x̄, uD) =
M̂TER(x̄, uD)

M̂TES(x̄, uD)
(33)

If the indifference curves are linear, as postulated, or if they are convex but patients under a particular

alternative of surgical technology are each located on the same relative point on their respective indifference

curves, then these rates will be the same across all percentiles of resistance, uD ∈ UD.

I calculate the standard errors of this marginal rate of substitution with 100 bootstrap iterations.

I also estimate an approximation of the marginal rate of substitution by estimating the local average

treatment effects on readmission and on length of stay and plugging in:
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M̂RS ≈
ψ̂R

1

π̂1

ψ̂S
1

π̂1

(34)

where π̂1 is the estimate of the first-stage coefficient representing the effect of Z on DL, and ψ̂
R
1 and ψ̂S1 are

the intent to treat effects from the reduced form estimating equations for readmission and for length of stay,

respectively.

I calculate standard errors on this estimate of the marginal rate of substitution in Equation 34 using the

Delta method.

6 Empirical Results

6.1 Testing the Model Predictions for Average Patients

The model predicts in Equation 23 that the average length of stay among laparoscopic patients will be less

than that among abdominal patients, conditional on covariates. I estimate the difference in conditional

expectations of the chance of a long length of stay using ordinary least squares regression.

Table 2 shows the OLS estimates of the effect of laparoscopic surgery (relative to abdominal surgery) on

length of stay of 2 days or more under several specifications that each add additional covariates to control for

potential confounding from patient and provider characteristics, as well as a fourth, fixed effect specification.

The first specification has no covariates. The second controls for demographic covariates, the third adds

comorbidities and gynecological conditions, the fourth adds characteristics of the residents in the patient’s

Zip code, and the fifth adds hospital characteristics. Section 4 lists the specific covariates in each category.

In all specifications, standard errors assume clustering at the hospital level.

Laparoscopic hysterectomy patients have between a 41 percentage point and a 46 percentage point lesser

chance of a length of stay that is 2 days or longer. This is in keeping with the model’s prediction of shorter

mean lengths of stay among laparoscopic patients. The point estimate is fairly stable across the different

specifications.

The model predicts that whether abdominal patients or laparoscopic patients have lower or higher mean

readmission rates is ambiguous. Table 3 shows that OLS and FE estimates of the association between

laparoscopic surgery and any 10-day all-cause readmission is a reduction of around two percentage points

percentage points. The estimate is also very stable across specifications.

30



Table 2: Association between Laparoscopic Procedure and Probability of Length of Stay of 2 or More
Days: OLS and FE Regression

(1) (2) (3) (4) (5) (6)

Laparoscopic -0.460∗∗∗ -0.460∗∗∗ -0.459∗∗∗ -0.461∗∗∗ -0.468∗∗∗ -0.467∗∗∗

(0.0137) (0.0137) (0.0138) (0.0137) (0.0141) (0.0136)

Observations 60832 60832 60832 59634 52349 52347
Dependent variable mean 0.952 0.952 0.952 0.952 0.951 0.951
Demographic Controls ✓ ✓ ✓ ✓ ✓
Clinical Controls ✓ ✓ ✓ ✓
Zip Code Controls ✓ ✓ ✓
Hospital Controls ✓ ✓
Fixed Effects HRR
F 1119.0 234.9 86.50 69.29 57.73 59.67
Adj. R2 0.277 0.281 0.285 0.286 0.297 0.302

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Ordinary least squares and fixed effects regression estimates of the difference between laparoscopic
and abdominal hysterectomies in prevalence of a length of stay being two or more days. Demo-
graphic controls: whether the patient is Black, a race other than white or Black, under 65 years of
age, or over 74 years of age. Clinical controls: the Charlson comorbidity index and indicators for
whether the patient had diabetes, malignant neoplasm, non-malignant neoplasm, body mass index
of 30 or over (considered obese), history of cancer indicated on the hysterectomy claim, uterine
fibroids, endometriosis, pelvic organ prolapse, female genital bleeding, post-menopausal bleeding,
an ovarian cyst, female genital pain, or peripheral adhesions. Zip code controls of the patient’s
residence: white percent of residents, the college-educated percent of residents, the percent of
residents with public assistance (including cash or nutritional assistance), the median household
income, and the percent of residents on Medicaid. Hospital controls: number of hysterectomies
the hospital performed that year, a quality measure on the appropriate use of antibiotics, a quality
measure on the prevention of blood clots in heart patients, and the overall Consumer Assessment
of Healthcare Providers & Systems (CAHPS) score. HRR= Hospital Referral Region. Standard
errors assume clustering at the hospital level.
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Table 3: Association between Laparoscopic Procedure and Probability of All-Cause 10-Day Readmission: OLS
and FE Regression

(1) (2) (3) (4) (5) (6)

Laparoscopic -0.0187∗∗∗ -0.0179∗∗∗ -0.0180∗∗∗ -0.0186∗∗∗ -0.0203∗∗∗ -0.0208∗∗∗

(0.00335) (0.00336) (0.00344) (0.00350) (0.00376) (0.00384)

Observations 60832 60832 60832 59634 52349 52347
Dependent variable mean 0.0577 0.0577 0.0577 0.0577 0.0572 0.0572
Demographic Controls ✓ ✓ ✓ ✓ ✓
Clinical Controls ✓ ✓ ✓ ✓
Zip Code Controls ✓ ✓ ✓
Hospital Controls ✓ ✓
Fixed Effects HRR
F 31.23 17.60 21.22 17.94 15.53 15.12
Adj. R2 0.000369 0.00176 0.00721 0.00736 0.00874 0.00938

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Ordinary least squares and fixed effects regression estimates of the difference between laparoscopic and
abdominal hysterectomies in prevalence of a 10-day all-cause readmission. Demographic controls: whether
the patient is Black, a race other than white or Black, under 65 years of age, or over 74 years of age.
Clinical controls: the Charlson comorbidity index and indicators for whether the patient had diabetes,
malignant neoplasm, non-malignant neoplasm, body mass index of 30 or over (considered obese), history of
cancer indicated on the hysterectomy claim, uterine fibroids, endometriosis, pelvic organ prolapse, female
genital bleeding, post-menopausal bleeding, an ovarian cyst, female genital pain, or peripheral adhesions.
Zip code controls of the patient’s residence: white percent of residents, the college-educated percent
of residents, the percent of residents with public assistance (including cash or nutritional assistance),
the median household income, and the percent of residents on Medicaid. Hospital controls: number of
hysterectomies the hospital performed that year, a quality measure on the appropriate use of antibiotics,
a quality measure on the prevention of blood clots in heart patients, and the overall Consumer Assessment
of Healthcare Providers & Systems (CAHPS) score. HRR= Hospital Referral Region. Standard errors
assume clustering at the hospital level.

6.2 Testing the Model Predictions for Marginal Patients

Next, I test the model’s assumptions and predictions about marginal patients. The theoretical model in Sec-

tion 3 assumes that laparoscopic procedures have shorter lengths of stay than abdominal procedures among

marginal patients, and it predicts in Equation 49 that laparoscopic procedures have greater readmission rates

than abdominal procedures among marginal patients.

Section 3.3.1 explains that the predictions about marginal patients imply predictions about instrument

compliers. Intuitively, patient near-indifferent are more likely to be induced into switching their choice on

the basis of relative distance. In more technical detail, the model is condition on a relative distance, so

there is a set of marginal patients for each level of relative distance. Each of these sets of marginal patients’

treatment effects are marginal treatment effects identifiable with the use of the relative distance instrument,

and the local average treatment effect is a positively weighted combination of the marginal treatment effects.

32



Table 4 presents the two-stage least squares estimates of the local average treatment effects on whether

a hysterectomy patient has a length of stay of two days or more. Across specifications, the estimated effect

is negative and statistically significant. The magnitude of the effect is greater as more factors are controlled

for. Column 5 shows that controlling for all covariates, laparoscopic hysterectomy causes a 57 percentage

point decline in the chance of a length of stay of two or more days, relative to abdominal hysterectomy,

among patients who are induced into the laparoscopic mode by the relative distance instrument’s variation.

I also estimate that the local effect of laparoscopic surgery on the probability of a length of stay of 3 or

more days is to lower it by 55 percentage points, though the effect is noisily estimated and not statistically

significant (Table 16 in Appendix D).

Table 4: Local Effect of Laparoscopic Procedure on the Probability of Length of Stay is 2 or More Days:
2SLS

(1) (2) (3) (4) (5) (6)

Laparoscopic -0.332∗∗∗ -0.397∗∗∗ -0.443∗∗∗ -0.542∗∗∗ -0.567∗∗∗ -0.504∗∗∗

(0.0681) (0.0644) (0.0634) (0.0950) (0.109) (0.129)

Observations 54992 54992 54992 54972 48553 48553
Dependent Variable Mean 0.950 0.950 0.950 0.950 0.949 0.949
Demographic Controls ✓ ✓ ✓ ✓ ✓
Clinical Controls ✓ ✓ ✓ ✓
Zip Code Controls ✓ ✓ ✓
Hospital Controls ✓ ✓
Fixed Effects HRR
F 23.82 56.07 27.99 24.05 21.90 21.40
Adj. R2 0.260 0.281 0.290 0.283 0.289 0.289
First-Stage Effective F 94.41 102.1 104.4 60.45 43.97 29.09

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Two-staged least squares estimates, using relative distance to hospital with laparoscopic surgery
as instrument. Across specifications, the effective F statistic (due to Montiel Olea and Pflueger
(2013) and Kleibergen and Paap (2006)) should be compared against either the two-stage least
squares/limited information maximum likelihood critical value for 5% bias, which is 37.418, or for
10% bias, which is 23.109. Demographic controls: whether the patient is Black, a race other than
white or Black, under 65 years of age, or over 74 years of age. Clinical controls: the Charlson
comorbidity index and indicators for whether the patient had diabetes, malignant neoplasm, non-
malignant neoplasm, body mass index of 30 or over (considered obese), history of cancer indicated
on the hysterectomy claim, uterine fibroids, endometriosis, pelvic organ prolapse, female genital
bleeding, post-menopausal bleeding, an ovarian cyst, female genital pain, or peripheral adhesions.
Zip code controls of the patient’s residence: white percent of residents, the college-educated percent
of residents, the percent of residents with public assistance (including cash or nutritional assistance),
the median household income, and the percent of residents on Medicaid. Hospital controls: number
of hysterectomies the hospital performed that year, a quality measure on the appropriate use of
antibiotics, a quality measure on the prevention of blood clots in heart patients, and the overall
Consumer Assessment of Healthcare Providers & Systems (CAHPS) score. HRR= Hospital Referral
Region. Standard errors assume clustering at the hospital level. Standard errors assume clustering
at the hospital level.
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Estimates of the local treatment effects on the chance of a 10-day readmission are shown in Table 5.

Across specifications, the estimated effect on readmissions is positive and economically significant. It is

statistically significant controlling for demographic, clinical and Zip-code level socioeconomic factors. When

hospital factors – including some Hospital Compare quality measures which are not available for all hospitals

– are additionally controlled for, the point estimate is a statistically significant increase in the readmission

rate of 23 percentage points. I conclude from this evidence that there is good reason to believe that compliers

experience greater readmission risk under laparoscopic hysterectomy than under abdominal hysterectomy.

As a robustness check, I also estimate that the local effect of laparoscopic surgery on the chance of a 90-day

readmission is a 17 percentage point increase, under the specification with all covariates (Appendix 17).

My study in its current form cannot explain why marginal laparoscopic hysterectomy patient experience

greater readmission rates than marginal abdominal patients. One possibility is that marginal laparoscopic

patients experience greater injury rates than inframarginal laproscopic patients and marginal abdominal

patients. One metastudy suggests that laparoscopic patients have greater rates of bladder and ureter injuries

than abdominal patients (Teeluckdharry et al., 2015). Indeed, I find that evidence that marginal laparoscopic

hysterectomy patients experience greater rates of readmissions in which it was indicated they had urogenital

infections (Table 18 in Appendix D), which are associated with such injuries.

In sum, these results are consistent with the model’s assumptions and predictions for marginal patients:

the two-stage least squares procedures estimate that the chance of a hysterectomy having a long length

of stay is greater among marginal abdominal patients than among marginal laparoscopic patients, and the

chance of a readmission is greater among marginal laparoscopic patients than among marginal abdominal

patients.
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Table 5: Local Effect of Laparoscopic Procedure on the Probability of Any 10-day Readmission:
2SLS

(1) (2) (3) (4) (5) (6)

Laparoscopic 0.362∗∗∗ 0.312∗∗∗ 0.261∗∗∗ 0.326∗∗∗ 0.233∗ 0.228∗

(0.0763) (0.0709) (0.0687) (0.102) (0.120) (0.136)

Observations 54992 54992 54992 54972 48553 48553
Dependent Variable Mean 0.0583 0.0583 0.0583 0.0583 0.0576 0.0576
Demographic Controls ✓ ✓ ✓ ✓ ✓
Clinical Controls ✓ ✓ ✓ ✓
Zip Code Controls ✓ ✓ ✓
Hospital Controls ✓ ✓
Fixed Effects HRR
F 22.53 13.49 17.06 12.88 12.22 11.96
Adj. R2 -0.166 -0.123 -0.0816 -0.127 -0.0660 -0.0685
First-Stage Effective F 94.41 102.1 104.4 60.45 43.97 29.09

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Two-staged least squares estimates, using relative distance to hospital with laparoscopic
surgery as instrument. Across specifications, the effective F statistic (due to Montiel Olea
and Pflueger (2013) and Kleibergen and Paap (2006)) should be compared against either the
two-stage least squares/limited information maximum likelihood critical value for 5% bias,
which is 37.418, or for 10% bias, which is 23.109. Demographic controls: whether the patient
is Black, a race other than white or Black, under 65 years of age, or over 74 years of age.
Clinical controls: the Charlson comorbidity index and indicators for whether the patient
had diabetes, malignant neoplasm, non-malignant neoplasm, body mass index of 30 or over
(considered obese), history of cancer indicated on the hysterectomy claim, uterine fibroids,
endometriosis, pelvic organ prolapse, female genital bleeding, post-menopausal bleeding, an
ovarian cyst, female genital pain, or peripheral adhesions. Zip code controls of the patient’s
residence: white percent of residents, the college-educated percent of residents, the percent
of residents with public assistance (including cash or nutritional assistance), the median
household income, and the percent of residents on Medicaid. Hospital controls: number of
hysterectomies the hospital performed that year, a quality measure on the appropriate use
of antibiotics, a quality measure on the prevention of blood clots in heart patients, and the
overall Consumer Assessment of Healthcare Providers & Systems (CAHPS) score. HRR=
Hospital Referral Region. Standard errors assume clustering at the hospital level. Standard
errors assume clustering at the hospital level.
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6.3 Efficiency of the Extent of Diffusion: Benefit-Cost Analysis on the Margin

There are a number of reasons that medical technologies may not diffuse to all cases for which they would

be efficient or that they might diffuse to too many cases, including cases for which they are not effective.

These include asymmetric information, regulation, and underinsurance. If a technology poses tradeoffs

between different dimensions of quality, patients who are indifferent between the alternatives should face

roughly similar expected benefits from choosing one option as they would under the other option. This

section presents a back-of-the-envelope benefit-cost analysis using estimates of the relative effectiveness of a

technology on the margin of an instrumental variable quasi-experiment. From this analysis, one can infer

whether the technology has diffused to an efficient extent.

The expected differential benefit of laparoscopic hysterectomy could be estimated as the estimated benefit

of a reduction in the length of stay in the hospital, relative to the length of stay under abdominal hysterec-

tomy. According to descriptive analysis from the American Hospital Association’s Annual Survey, the cost

of a day in the hospital in Washington state, the U.S. state with the highest daily hospital cost, was $2,490

in 2008 (Kaiser Family Foundation, 2021). Combined with the estimate of laparoscopic surgery’s effect

among marginal patients on the chance of having a length of stay of two or more days (a 56.7 percentage

point increase), and I estimate that the differential benefit of laparoscopic surgery is roughly $1,411.83. To

estimate the differential cost laparoscopic surgery poses by increasing the patient’s readmission risk, I use

an estimate from hospital discharge reports that the average cost of a readmission in the U.S. is $15,200

in 2010 (Weiss and Jiang, 2006). This implies that the expected differential cost of laparoscopic surgery

is $3,465.60, so laparoscopic surgery poses an expected $2,054 loss among marginal patients, relative to

abdominal surgery. Since suffering an acute surgical complication and being readmitted to a hospital on an

inpatient basis arguably imposes greater non-pecunicary costs than discharge from a planned inpatient stay

being delayed by a day, this net loss estimate is likely an underestimate. This suggests that laparoscopic

surgery may have diffused beyond the efficient extent in this setting, from the perspective of the individual

patient considering the adverse outcomes under alternative hysterectomy procedures.

Why there may be too much laparoscopic surgery is beyond the scope of this paper. However, I will

briefly speculate some potential causes of a wedge that would cause this. Reimbursement incentives could

favor one treatment over the other. As I described in Section 2, the hospitals are reimbursed the exact same

rate for laparoscopic hysterectomy as they are for abdominal hysterectomy, and the physician reimbursement

rates across procedures are similar.

Alternatively, a wedge could be introduced by another actor in the health care system who has different

preferences from the patient over adverse outcomes and is able to influence treatment decisions on the
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margin. Say that hospitals maximize either profits or population health, and thus have incentives to perform

additional surgeries as long as the marginal surgeries yield positive utility. Hospitals that are near full have

an incentive to switch indifferent patients from abdominal surgery to a technology that results in shorter

lengths of stay, in order to increase surgical volume. This would result in more laparoscopic surgery than is

efficient from the individual patient’s perspective. I investigate this in work outside this paper.

6.4 Estimation of the Marginal Rate of Substitution from Two-Stage Least

Squares

Here I estimate the marginal rate of substitution of a greater chance of a long length of stay for a lesser

chance of a readmission, by taking the ratio of the local effect on readmissions to the local effect on length

of stay (Equation (34)). The estimates under different outcome model specifications are listed in Table 6. In

the specifications controlling demographic and clinical characteristics as well as the specification additionally

controlling for characteristics of the patients’ neighborhoods, I estimate the marginal rate of substitution

to be around -0.60. In the fifth specification, where the effect is estimated to be less and with greater

uncertainty, the estimate of the marginal rate of substitution is -0.41.

Table 6: Estimates of the marginal rate of substitution from two-stage least squares

(1) (2) (3) (4) (5)

MRS -1.090∗∗∗ -0.786∗∗∗ -0.590∗∗∗ -0.601∗∗∗ -0.411∗

(0.328) (0.229) (0.187) (0.226) (0.242)

Observations 54992 54992 54992 54972 48553
Demographic Controls ✓ ✓ ✓ ✓
Clinical Controls ✓ ✓ ✓
Zip Code Controls ✓ ✓
Hospital Controls ✓

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Estimates of the marginal rate of substitution of a greater chance of a long length
of stay for a lesser chance of a readmission. They are calculated by dividing the two-
stage least squares estimate of the local average treatment effect on the probability
of a patient’s length of stay being 2 or more days (relative to abdominal surgery) by
the two-stage least squares estimate of the local effect on the probability of an all-
cause 10-day readmission. Standard errors were calculated by the Delta method.
The model in Column 5 includes quality measures from Hospital Compare which
are not available for all hospitals.

The results from the fifth specification with all covariates implies that patients are willing to trade off a

55 percentage point increase in the chance of long length of stay for a 23 percentage point decrease in the

probability of a readmission. The standard errors of the marginal rate of substitution estimate are calculated
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by the Delta method and are presented in the parentheses.

6.5 Estimation of Marginal Treatment Effects across Heterogeneous Patients

In this section, I test the model’s predictions about outcomes among marginal patients through estimation

of marginal treatment effects of laparoscopic surgery, as opposed to abdominal surgery, on readmission and

on length of stay among patients with a given level of unobserved “cost” or “resistance” to the laparoscopic

option, which the theory section showed is partially dependent on the patient complexity characteristic, θ.

I estimate these effects for different levels of unobserved resistance to laparoscopic surgery.

The propensity score as a function of observable covariates and excluded instruments is integral to the

estimation of marginal treatment effects. The marginal treatment effects are identified only for propensity

scores that are induced by the variation in the available instrument and that are observed under both

surgical options. Figure 5 presents the distributions of propensity scores, generated from a probit regression,

among laparoscopic patients and among abdominal patients. Much of the probability mass of the overlap

of propensity score distributions under the two surgical alternatives is among propensity scores between five

and ten percent, so the marginal treatment effects among patients with propensity scores outside that range

are not identified.

Figure 5: Overlapping Distributions of Propensity Scores

Distributions of propensity scores among laparoscopic cases and abdominal cases. The local instrumental variable method and
the separate method of estimating marginal treatment effects can identify where there is overlap of the propensity scores of the
two groups.

The covariates X that I control for are the demographic controls, the clinical controls, the Zip code-level

controls, and one of the hospital controls, the number of hysterectomies that the hospital performed that

year. I omit the remaining the hospital controls, the quality measures from Medicare’s Hospital Compare

program, because they are not available for all hospitals and thus their inclusion would reduce my sample
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of hysterectomies for this data-intensive estimation approach considerably.

The first two rows of Figure 7 graphically present estimates of marginal treatment effects on the probabil-

ity of a length of stay being 2 or more days, with respect to the patient’s percentile of unobserved resistance

to (or, net unobserved “cost” of) laparoscopic surgery as opposed to abdominal surgery. The effects are

estimated by local instrumental variable method (row one) and by the separate method (row two). The

first plot in the first row summarize the estimates from each of the parametric and semiparametric models

estimated. The estimates are very similar across models within estimation method. In the local instrumen-

tal variable method, estimates of the marginal effects across model specifications are about -0.5 among the

patients most likely to undergo laparoscopic surgery. The effects among patients at the 15th percentile range

from -1 to -2.5, with estimates from the parametric models sloping down more steeply than the estimates

from the semiparametric models.

These point estimates are quite large, but keep in mind the wide 90 percent confidence intervals, shaded in

gray, particularly for percentiles of resistance with less support from the data. To give a sense of the variation

in the estimations, plots in the second column present point estimates and 90% confidence intervals from

the most restrictive model, the parametric model assuming that the unobserved heterogeneous component of

the outcome, KY (p), is Normal, and plots in the third column present results from the most flexible model,

the semiparametric models with the narrowest bandwidth, 0.01. Estimates of the effects on length of stay

are mostly significant at the 90% level.

As shown in the second row, the separate method estimates that the effects on length of stay among

the patients at the 5th percentile range from about -0.4 to 0.6. Among patients at the 15th percentile, the

estimates are between -0.7 and -0.9.

Across all models, the estimates suggest that the effects of laparoscopic surgery on length of stay are

greater for patients with greater resistance to the laparoscopic alternative. However, the width of the

confidence intervals relative to the downward slope of the point estimates make this finding merely suggestive.

The full set of results on length of stay from the instrumental variable method and the separate method are

in Appendix Figure 16 and Figure 18, respectively.

The third and fourth rows of Figure 7 presents estimates of the marginal treatment effects on the chance

of a readmission from the local instrumental variable method and the separate method, respectively. Across

most models, the local instrumental variable estimators in row 3 suggest that the effects of readmission

are positive and increasing with respect to unobserved resistance to laparoscopic surgery. An exceptional

set of results are from estimating the model assuming the unobserved heterogeneity is distributed Normal.

Estimates of that model suggest the effect on readmission is decreasing. At the 5th percentile of resistance,

the estimates are clustered around an effect size of 0.2, and at the 15th percentile, they range from 0.15 to
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0.65. Economically, this fits with the prior finding that patients with greater resistance experience differen-

tial lengths of stay of greater magnitude under laparoscopic surgery than patients with lesser resistance: if

patients who have greater resistance to laparoscopic surgery experience more beneficial laparoscopic treat-

ment effects on lengths of stay than patients who are more willing to choose laparoscopic surgery, then those

higher-resistance patients must experience worse outcomes under laparoscopic surgery on some other dimen-

sion than the lower-resistance patients. Statistically, these findings must be taken with caution as the 90%

confidence intervals almost always include zero and are wide, particularly so for higher-resistance patients.

Estimates from the separate method tell a somewhat different story. While most of the point estimates

for the range of percentiles of resistance that are most supported by the data, from the 5th to the 10th

percentiles, are positive, the series of estimates from each model are flat or downward sloping. The effects

are much smaller in magnitude than those estimated from the local instrumental variables. Evidence from

the most restrictive models, the Normal model and the polynomial of degree one model, suggest that the

effect on readmissions may be constant over percentiles of resistance, whereas point estimates from the other

models suggest that the effects may be decreasing with respect to resistance. In all cases, the confidence

sets for the estimates are quite wide. The full set of results on readmissions from the instrumental variable

method and the separate method are in Appendix Figure 17 and Figure 19, respectively.

In sum, there is strong evidence that patients experience lower lengths of stay under laparoscopic surgery

than under abdominal surgery, and there is evidence that this effect could be declining in patient resistance

to laparoscopic surgery. This raises the question of what relative outcome from laparoscopic surgery could be

worsening as resistance increases that counterweights this declining relative length of stay. Estimates from

local instrumental variable regression suggest that the risk of readmissions is greater under laparoscopic

surgery and that this effect is greater among patients with greater resistance to laparoscopic surgery. This

would be the countervailing consideration that makes laparoscopic surgery less attractive among patients with

greater resistance. It also is consistent with the evidence from the two-stage least squares procedures, which

is no surprise since the local average treatment effect is a weighted combination of the marginal treatment

effects, and the weights are all positive because the instrument satisfies monotonicity, or, uniformity. (See

Appendix Figure 20 for the estimated weights at each percentile of unobserved resistance.) Evidence from

the separate method largely confirms the signs of the effects on length of stay and readmission and the slope

of the effects on length of stay, but they are largely at odds with the local instrumental variable estimates of

the sign of the slope of the effects on readmissions. It is not clear how to definitively settle this discrepancy,

but it is relevant to note that, the separate method estimates all the effects twice, once among laparoscopic

patients and once among abdominal patients, while the local instrumental variable method performs this

once. Therefore, it’s possible that the separate method is underpowered in my sample.
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6.6 Estimation of the Marginal Rate of Substitution Using Marginal Treatment

Effects

This section attempts to estimate the marginal rate of substitution at different percentiles of resistance using

a ratio of marginal treatment effects, as in Equation 21. I divide the estimated marginal effect on having a

readmission by the estimated marginal effect on having a length of stay of two or more days, and I plot the

results over the resistance.

For brevity, I present estimates of marginal rates of substitution from the most restrictive model and the

most flexible model estimated by local instrumental variable. In Figure 8, (a) plots estimates of the effect on

readmission, the effect on length of stay, and the marginal rate of substitution from the model assuming that

the unobserved component has a Normal distribution. The 90 percent confidence intervals on the estimates

of the marginal rate of substitution are represented by the gray regions. The marginal rate of substitution is

estimated to be -0.5 at the 5th percentile and to slope upward to just less than zero at the 14th percentile.

Subfigure (b) plots results from the semiparametric model with a bandwidth of 0.01. The marginal rate of

substitution is estimated to be -0.5 at the 5th percentile and slopes slightly upward at the 14th percentile.

The separate estimates from the restrictive, Normal model are stable, from -0.3 to -0.2. The estimates

from the most flexible model are nonmonotonic and volatile, ranging from -0.8 at the 5th percentile to 0.6

at the 14th. The full set of estimates of the marginal rate of substitution are in Appendix Figure 21. In no

cases are the marginal rates of substitution statistically significantly different from zero, which follows from

combining two noisy sets of estimates of the marginal treatment effects on length of stay and on readmission.
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Figure 7: Summary of Marginal Treatment Effect Estimates

Effect on Probability of Length of Stay of 2 or More Days, Local Instrumental Variable Method

(a) Local instrumental variable esti-
mates from all length of stay models.

(b) Parametric: Normal. (c) Semiparametric: bandwidth 0.01.

Effect on Probability of Length of Stay of 2 or More Days, Separate Method

(d) Separate method estimates from
all length of stay models.

(e) Parametric: Normal. (f) Semiparametric: bandwidth 0.01.

Effect on Probability of All-Cause 10-Day Readmission, Local Instrumental Variable Method

(g) Local instrumental variable
method estimates from all readmis-
sion models.

(h) Parametric: Normal. (i) Semiparametric: bandwidth 0.01.

Effect on Probability of All-Cause 10-Day Readmission, Separate Method

(j) Separate method estimates from
all readmission models.

(k) Parametric: Normal. (l) Semiparametric: bandwidth 0.01.

The horizontal axis in each plot is UD, the case’s percentile on the distribution of unobserved “resistance” to or “cost” of the
laparoscopic choice. Gray bands are 90% confidence intervals, bootstrapped with 100 repititions. Parametric models presented
in middle column model unobserved heterogeneity (functions of the propensity score) as Normal. Semiparametric models in
right column model the unobserved heterogeneity with a local polynomial using the Epanechnikov kernel.
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Figure 8: Marginal Rates of Substitution across Heterogeneous Patients, Calculated from Marginal Treatment
Effects

Local Instrumental Variable Method

(a) Estimates from Normal Parametric Model (b) Estimates from Semiparametric Model

Separate Method

(c) Estimates from Normal Parametric Model (d) Estimates from Semiparametric Model

Estimates of the marginal rate of substitution of readmission risk for length of stay, at each percentile of unobserved “resistance”
to or “cost” of the laparoscopic approach. Also plotted are the bootstrapped 90% confidence intervals of the marginal rates
of substitution and the marginal treatment effects on readmission rates and on chance of a length of stay of 2 days or more.
Semiparamteric results come from the Epanechnikov filter with a 0.01 bandwidth. The marginal rate of substitution is calculated
by dividing the marginal tratment effect on readmission by the marginal treatment effect on length of stay.
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7 Conclusion

Medical technologies may present patients with tradeoffs between improvements on different dimensions of

care. I have shown that hysterectomy patients on the margin between laparoscopic and abdominal surgery

face a trade-off between shorter lengths of stay and greater readmission risk. I presented a Roy model in

which patients and physicians choose surgical technology based on how it affects two clinical outcomes.

The model predicts that indifferent patients and their physicians face shorter lengths of stay but greater

readmission rates under laparoscopic surgery than abdominal surgery. These differences in outcomes among

indifferent patients are identified by marginal treatment effects, which can be estimated for patients with

different levels of unobserved resistance to the laparoscopic alternative. The local average treatment effects

identified by two-stage least squares regressions are positively weighted averages of the marginal treatment

effects across patient types. Empirically I find that compliers of a distance-based instrument for the choice

of laparoscopic procedure experienced shorter lengths of stay under laparoscopic hysterectomy than under

abdominal hysterectomy but also experienced greater readmission rates. The estimation of these local

average treatment effects leads to an estimation of a ratio that equals patients’ marginal rate of substitution

of longer length of stay for lesser readmission risk if providers had no influence over treatment but more

broadly reflects preferences and objectives in the health care system otherwise. The marginal treatment effect

estimates suggest that the (negative, beneficial) effect on length of stay is greater in magnitude for patients

with greater unobserved resistance to laparoscopic surgery, and some model specifications suggest that the

(positive, detrimental) effect on readmission rates also increases in magnitude with respect to unobserved

resistance to the laparoscopic alternative, although these marginal treatment effect estimates are imprecise.

Taking a wider view, this paper emphasizes the multidimensionality of technology. Technological innova-

tion does not proceed along a single continuum and may lead to new products and services that prompt end

users to make tradeoffs between different dimensions of quality, not just between quality and cost. When end

users are heterogeneous, as in the case of hysterectomy patients with different diagnoses, different comor-

bidities, and different complexities, diffusion of new technologies may proceed unevenly or incompletely. In

health care, understanding these tradeoffs is important to understanding the welfare impacts of new medical

technologies and to assessing their allocative efficiency.
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A Theory: Derivations of Findings

A.1 Choices by Patients with Different Levels of Complexity

This section shows how the utility functions under laparoscopic surgery and under abdominal surgery and

the adverse outcome production functions affect choices among patients with, alternatively, low and high θ

types.

Consider the indifference curve of patient type θ = 0 for fixed Z (Figure 4a) in terms of S and R,

conditional on X and Tj . Note that the slope of the indifference curve is m = − ωs

ωR
, and bliss utility, Tj ,

and ωT are encoded in the indifference curve’s R-intercept:

R(θ) =
uB − ωTTj

ωR
− ωS
ωR

S(θ) (35)

Each point represents a bundle of adverse clinical outcomes, and points L0 and A0 represent the bundles

that type θ = 0 can achieve under the two production technologies available L and A, respectively. Highest

utility is achieved at the origin, and utility declines as S or R increases. From the assumption that low

complexity cases choose L, it follows that

UL(0) < UA(0) (36)

−m =
ωs
ωR

<
δA − δL
αL − αA

(37)

<
γL − γA
αL − αA

(38)

The last line follows from

UA(1) > UL(1) (39)

γA − γL < δL − δA (40)

Inequality 38 implies that the bundles L0 and A0 be oriented relative to type 0’s indifference curve as

depicted in Figure 4a. Patients with the lowest complexity choose L, which yields lower S but higher R than

A.

By analogous reasoning, patients with the highest complexity (type θ = 1) choose abdominal surgery
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bundle A1, which yields a lesser readmission risk but longer length of stay than L (Figure 4b).

A.2 Comparative Advantage

Assuming that low-θ types choose laparoscopic surgery and high-θ types choose abdominal surgery, i.e.,

UL(θ = 0) > UA(θ = 0) and UA(θ = 1) > UL(θ = 1) implies:

ωS(αL − αA) < ωR(γA − γL) (41)

ωS( αA − αL︸ ︷︷ ︸
>0 by SA(θ) > SL(θ)∀θ

) > ωR(γA − γL) (42)

and

ωS(βA − βL)− ωR(δL − δA) < ω(αL − αA)− ωR(γA − γL) < 0 (43)

A.3 Existence of A Type of Patient Who is Indifferent Conditional on Z

Consider the indifferent patient, conditioning on X and the idiosyncratic shocks. Setting the utility of

laparoscopic surgery, as a function of θ equal to the utility of abdominal surgery, substituting into the

utility functions, , set equal to each other and solving for θ yields:

θ∗ =
ωR (γL − γA) + ωTZ − ωS (αA − αL)

ωS (βA − βL)− ωR (δL − δA)
(44)

where θ∗ is the θLA(Z) that makes a patient indifferent for a particular value of Z. The type of patients θ

who are indifferent at value Z is a linear function of Z, and as Z increases, θ∗ decreases:

∂θ∗

∂Z
=

ωT
ωS(βA − βL)− ωR(δL − δA)

< 0 (45)

where the denominator is negative due to the findings derived from comparative advantage.

A.4 Outcome Predictions on the Margin

Consider a particular combination of values of θ, TL, and TA such that a patient with those values is

indifferent. Conditioning on X, there is one θ for a given Z = TL − TA such that the patient is indifferent

between procedures. Call this θLA(Z) = θ∗.
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UL(θ
∗, TL) = UA(θ

∗, TA) (46)

ωS
ωR

(αL + βLθ
∗ − αA − βAθ

∗) +
ωT
ωR

(Z) = (γA + δAθ
∗)− (γL + δLθ

∗) (47)

If we assume that αL+βLθ < αA+βAθ for all values of θ, because laparoscopic surgery is always less invasive

than abdominal surgery, then the left hand side must be negative. So the right-hand side must be negative

when Z = 0: the indifferent patient experiences a higher readmission rate under laparoscopic surgery than

under abdominal surgery:

(γA + δAθLA)− (γL + δLθLA) < 0 (48)

i.e.,

RA(θLA)−RL(θLA) < 0 (49)

Substituting Equation (44) for θ∗ in Equation (47) and differentiating with respect to Z yields:

d[SL(θ
∗)− SA(θ

∗)]

dZ
= ωT

(
βL − βA

ωS(βA − βL)− ωR(δL − δA)

)
(50)

d[RL(θ
∗)−RA(θ

∗)]

dZ
= ωT

(
δL − δA

ωS(βA − βL)− ωR(δL − δA)

)
(51)

Substituting these into Equation (43) yields:

−ωS
d[SL(θ

∗)− SA(θ
∗)]

dZ
− ωR

d[RL(θ
∗)−RA(θ

∗)]

dZ
> 0 (52)

One can see that both derivatives cannot be simultaneously positive.

A.5 Predicted Difference in Mean Readmission Rates

Restating the difference in means between readmission rate among laparoscopic patients and among abdom-

inal patients:

51



R̄L − R̄A (53)

=
1

NL

 ∑
{i:θi<θ∗}

Ri +
∑

{i:θi=θLA&DA=1}

Ri


︸ ︷︷ ︸

Average R over inframarginal and marginal L patients

− 1

NA

 ∑
{i:θi>θLA

Ri +
∑

{i:θi=θLA&DA=1

Ri


︸ ︷︷ ︸

Average R among inframarginal and marginal A patients

(54)

(55)

=
1

NL

[∑
θ<θ∗

(γL + δLθi) +NLA&A (γL + δLθ
∗)

]
− 1

NA

[∑
θ>θ∗

(γA + δAθi) +NLA&A (γA + δAθ
∗)

]
(56)

It follows that R̄L − R̄A < 0 if:

1−Nθ∗&L
NL

γL − 1−Nθ∗&A
NA

γA +
1

NL

∑
θ<θ∗

δLθi −
1

NA

∑
θ>θ∗

δAθi <
Nθ∗&A
NA

(γA + δAθ
∗)− Nθ∗&L

NL
(γL + δLθ

∗)

(57)

One case see from Equation 57 that the sign of the difference in means is dependent on an interaction

of the differences between technologies in readmission rates among patients without complications, in the

degrees to which readmission rates increase with respect to θ, and the shares of patients of each technology

choice who are of different values of θ.

The right-hand side is the difference in weighted readmissions rates among θLA-type patients and among

abdominal patients, where the weights are the indifferent shares of patients of a particular choice. The

left-hand side is the difference in weighted readmission rates among θ = 0 types, where the weights are

the inframarginal shares of patients of the respective technology choice, added to the difference in weighted

average “complexity-sensitive” components of the readmission rates among inframarginal laparoscopic pa-

tients and among inframarginal abdominal patients, where the weights for a given patient type is that patient

type’s share of patients undergoing the respective type of surgery, and where “extra” readmission component

is δj , the degree to which readmission rates increase under technology j with θ.

Here one can see that whether the difference in means is positive or negative is not dependent on the sign

of the treatment effect among the marginal patients, whose treatment effect would be approximated by the

local average treatment effect. In other words, in this selection setting, theory allows for the sign of the local

average treatment effect to be different from the sign of the ordinary least squares estimate of the treatment

effect. This suggests departing from the conventional notion that a contradiction between the sign of the

estimated local average treatment effect and the sign of the ordinary least squares estimate of the average
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treatment effect is a cause for concern about the instrumental variable’s validity. Theory predicts that the

signs will be different under certain reasonable parameter assumptions and distributional assumptions.

Note that the finding about relative readmission rates among patients on the margin in Equation 48

implies

γA − γL < (δL − δA)θ
∗ (58)

Consider three cases:

Case 1: γA − γL > 0 . Then, δL − δA > 0. I.e., if readmission is worse for A than for L at θ = 0, then

readmissions must worsen faster, w.r.t. θ, under L than under A in order for readmissions to be higher under

L than under A for the θ∗ types.

This is illustrated in Figure 9a. The average readmission rate among laparoscopic patients is the integral

of RL times the patient population density w.r.t. θ. The blue hatched area represents the average readmission

rate if θ ∼ Uniform. The average readmission rate among abdominal patients under that distributional

assumption is the green area. One can see that the average among laparoscopic patients relative to the average

among abdominal patients rises if (1) the number of patients between the θ such that RL(θ) = RA(θ) and

θ∗ rises, (2) the difference in slopes δL − δA rises, and/or (3) (γL − γA) rises.

Case 2a: γA − γL < 0, and δL − δA > 0 . This case is represented by RL and R′
A in Figure 9b. The

average readmission rate under laparoscopic assuming uniformly distributed patients with respect to θ is

represented in blue in Figure 9b. The average among abdominal patients is the yellow area plus the green

area. Now readmissions mean under laparoscopic rises relative to the mean under abdominal patients if

(1) the number of patients between the θ such that RL(θ) = RA(θ) and θ∗ declines (2) the relative slopes

decline, and/or (3) RL(θ)−RA(θ) is lesser.

Case 2b: γA − γL < 0, and δL − δA < 0 . In this case, the mean readmission rate under laparoscopic

surgery is always greater than the rate under abdominal surgery, R′′
A(θ). If θ ∼ Uniform, the blue area in

Figure 9b is the average among laparoscopic patients and the green area is the average among abdominal

patients.
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(a) Case 1. Readmissions with respect to θ, under
each treatment alternative.

(b) Case 2a and Case 2b. Readmissions with re-
spect to θ, under laparoscopic treatment (RL(θ)),
under abdominal treatment in Case 2a (R′

A(θ)),
and under abdominal treatment in Case 2b
(R′′

A(θ)).
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B Further Data Description

Figure 10 shows the trends in hysterectomy from 2007 to 2012. Note that the ICD-9 procedure code for robot-

ically assisted procedure was introduced in the last quarter of 2008, and robotically assisted hysterectomies

up to the point were coded as laparoscopic.

Figure 10: Trends in Types of Hysterectomies as Seen in Medicare Inpatient Claims, over Calendar Quarters

As of the mid to late 2000s, abdominal and minimally invasive surgery had been coexisting. Most procedures were performed
with the oldest technology, abdominal surgery. As the robotic procedure has been used increasingly for hysterectomies, the
abdominal procedure has been used decreasingly. The share of hysterectomies performed laparoscopically – the minimally
invasive technology that is newer than abdominal surgery but older than robotic – has been roughly constant over time.
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Figure 11: Distribution of Inpatient Length of Stay across Hysterectomies, by Procedure Type
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C Instrument Validity

This section presents evidence supporting the validity of the relative distance instrument, which is equal to

the difference between a patient’s distance to her nearest hysterectomy-performing hospital that performs

laparoscopic surgery and the distance to her nearest hysterectomy-performing hospital. Appendix Table 8

presents the first stage results, showing instrument relevance. Appendix Figure 12 graphically shows the neg-

ative relationship between relative distance and probability of choosing laparoscopic rather than abdominal

hysterectomy. Appendix Table 9 presents evidence of the instrument’s exclusion from the outcome function

by comparing the characteristics of patients whose relative distance is greater than the median to those

whose relative distance is less than the median. Appendix Table 15 tests for instrument monotonicity by

estimating the first stage in demographic- and diagnostic-based subsamples.

Table 7: Distribution of the Relative Distance Instrument

p10 p25 p50 p75 p90

Relative Distance to Lap. Hospital 0 0 1 15 39

Distribution of values of the instrumental variable, a patient’s dis-
tance to her nearest hospital that performs laparoscopic surgery and
hysterectomy, relative to her nearest hospital that performs hysterec-
tomy, in miles.

C.1 Relevance

(a) Without controls
(b) Controlling for patient demo-
graphics and clinical characteristics

(c) Additionally controlling for pa-
tient neighborhood and hospital char-
acteristics

Figure 12: Binned scatter plots showing the association between a patient’s relative distance to a hospital with
laparoscopic surgery (in miles) and her likelihood of undergoing laparoscopic (as opposed to abdominal) hysterectomy.
The second panel controls for patient demographic and clinical characteristics, and the third panel additionally
controls for patient neighborhood and hospital characteristics. Lines of best fit are in red.
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Table 8: First Stage Results: Linear Regression of Relative Hospital Distance Predicting Laparoscopic Choice

(1) (2) (3) (4) (5) (6)

Relative Distance -0.000555∗∗∗ -0.000581∗∗∗ -0.000585∗∗∗ -0.000414∗∗∗ -0.000385∗∗∗ -0.000392∗∗∗

(0.0000571) (0.0000575) (0.0000572) (0.0000532) (0.0000581) (0.0000727)

Observations 54992 54992 54992 54972 48553 48553
Laparoscopic Rate 0.0670 0.0670 0.0670 0.0670 0.0686 .
Instrument Mean 12.32 12.32 12.32 12.31 11.35 .
Demographic Controls ✓ ✓ ✓ ✓ ✓
Clinical Controls ✓ ✓ ✓ ✓
Zip Code Controls ✓ ✓ ✓
Hospital Controls ✓ ✓
Fixed Effects HRR
Effective F 94.41 102.1 104.4 60.45 43.97 29.09

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

First stage with continuous instrumental variable for the estimation strategy to test the hypothesis about marginal
patients by two-stage least squares. Across specifications, the instrumental variable is the difference between the
patient’s distance to her nearest hysterectomy-performing hospital with laparoscopic surgery and the distance to her
nearest hysterectomy-performing hospital. The endogenous variable is an indicator for whether the hysterectomy was
performed laparoscopically, rather than abdominally. Relative distance is measured in miles. Across specifications,
the effective F statistic (due to Montiel Olea and Pflueger (2013) and Kleibergen and Paap (2006)) should be compared
against either the two-stage least squares/limited information maximum likelihood critical value for 5% bias, which
is 37.418, or for 10% bias, which is 23.109. Demographic controls: whether the patient is Black, a race other than
white or Black, under 65 years of age, or over 74 years of age. Clinical controls: the Charlson comorbidity index and
indicators for whether the patient had diabetes, malignant neoplasm, non-malignant neoplasm, body mass index of
30 or over (considered obese), history of cancer indicated on the hysterectomy claim, uterine fibroids, endometriosis,
pelvic organ prolapse, female genital bleeding, post-menopausal bleeding, an ovarian cyst, female genital pain, or
peripheral adhesions. Zip code controls of the patient’s residence: white percent of residents, the college-educated
percent of residents, the percent of residents with public assistance (including cash or nutritional assistance), the
median household income, and the percent of residents on Medicaid. Hospital controls: number of hysterectomies
the hospital performed that year, a quality measure on the appropriate use of antibiotics, a quality measure on the
prevention of blood clots in heart patients, and the overall Consumer Assessment of Healthcare Providers & Systems
(CAHPS) score. Standard errors assume clustering at the hospital level.
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C.2 Independence

59



Table 9: Patient Characteristics in Top and Lower Half of Instrument’s Distribution

Lesser Relative Distance Greater Relative Distance Overall

Relative Distance to Lap. Hospital 0.0504 24.50 12.28
(0.188) (28.70) (23.69)

Lap % of Hyst. 0.0846 0.0484 0.0665
(0.278) (0.215) (0.249)

White 0.798 0.833 0.815
(0.402) (0.373) (0.388)

Black 0.153 0.123 0.138
(0.360) (0.328) (0.345)

Not Black or white 0.0492 0.0442 0.0467
(0.216) (0.206) (0.211)

HMO 0.0432 0.0371 0.0402
(0.203) (0.189) (0.196)

Charlson index 4.152 3.967 4.060
(2.618) (2.654) (2.637)

Diabetes 0.171 0.179 0.175
(0.376) (0.383) (0.380)

Malignant Neoplasm 0.486 0.451 0.469
(0.500) (0.498) (0.499)

Non-Malignant Neoplasm 0.317 0.326 0.321
(0.465) (0.469) (0.467)

BMI30+ 0.0365 0.0256 0.0310
(0.188) (0.158) (0.173)

History of Cancer 0.0799 0.0766 0.0783
(0.271) (0.266) (0.269)

Uterine Fibroid 0.283 0.285 0.284
(0.451) (0.451) (0.451)

Endometriosis 0.103 0.118 0.111
(0.303) (0.323) (0.314)

Pelvic Organ Prolapse 0.0721 0.0796 0.0759
(0.259) (0.271) (0.265)

Female Genital Bleeding 0.118 0.135 0.127
(0.322) (0.342) (0.333)

Postmenopausal Bleeding 0.0985 0.101 0.0999
(0.298) (0.302) (0.300)

Other Ovarian Cyst 0.0807 0.0850 0.0828
(0.272) (0.279) (0.276)

Female Genital Pain 0.118 0.137 0.127
(0.322) (0.344) (0.333)

Pelvic peritoneal adhesions 0.0980 0.0998 0.0989
(0.297) (0.300) (0.299)

Characteristics among total hysterectomy patients. Lap = Laparoscopic. Hyst=Hysterectomies. HMO
= Any months that year on Medicare Advantage (managed care). BMI30+ = Body mass index ≥ 30,
considered obese.
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Figure 13: Main balance tests. Solid round binned scatterplots visually represent the reduced form regressions.
Hollow diamonds constitute the balance test, showing the relationship between (1) the variation in adverse outcomes
explained by patient and neighborhood characteristics and (2) the patient’s relative distance to laparoscopic surgery.
The latter correlation appears to be very small and an order of magnitude smaller than the reduced form effect,
allaying concerns that the instrument’s relationship with adverse outcomes of interest may be confounded by patients’
geographic determinants of health.
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Figure 14: Binned Scatter Plots of Predicted Readmissions versus Relative Distance, controlling for minimum
distance to any hospital and all Zip-level characteristics

(a) Predicted Any 10-Day Readmission
(b) Predicted Any 10-Day Readmission, controlling for Hos-
pital Referral Region fixed effects (HRR FE)

(c) Any 90-Day Readmission (d) Any 90-Day Readmission, controlling for HRR FE

(e) Predicted 90-Day Readmission with Urogenital Infection
(f) Predicted 90-Day Readmission with Urogenital Infec-
tion, controlling for HRR FE
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Figure 15: Binned Scatter Plots of Predicted Readmissions versus Relative Distance, controlling for minimum
distance to any hospital and all Zip-level characteristics

(a) Long Length of Stay (2+ Days)
(b) Long Length of Stay (2+ Days), controlling for Hospital
Referral Region fixed effects (HRR FE)

(c) Long Length of Stay (3+ Days)
(d) Long Length of Stay (3+ Days), controlling for HRR
FE
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C.3 Reduced Form

Table 10: Reduced Form: Any 10-Day Readmission

(1) (2) (3) (4) (5) (6)

Relative Distance -0.000201∗∗∗ -0.000181∗∗∗ -0.000153∗∗∗ -0.000135∗∗∗ -0.0000898∗∗ -0.0000896∗

(0.0000387) (0.0000385) (0.0000381) (0.0000393) (0.0000441) (0.0000498)

Observations 54992 54992 54992 54972 48553 48553

Dependent variable mean 0.0583 0.0583 0.0583 0.0583 0.0576 0.0576

Demographic Controls ✓ ✓ ✓ ✓ ✓

Clinical Controls ✓ ✓ ✓ ✓

Zip Code Controls ✓ ✓ ✓

Hospital Controls ✓ ✓

Fixed Effects HRR

F 27.02 15.50 21.08 17.48 14.87 14.14

Adj. R2 0.000397 0.00174 0.00733 0.00739 0.00858 0.00869

Standard errors in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

All specs control for Minimum Distance to Nearest Hospital.
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Table 11: Reduced Form: Any 90-Day Readmission

(1) (2) (3) (4) (5) (6)

Relative Distance -0.000292∗∗∗ -0.000263∗∗∗ -0.000174∗∗∗ -0.000149∗∗ -0.0000669 -0.000111

(0.0000692) (0.0000678) (0.0000650) (0.0000655) (0.0000732) (0.0000820)

Observations 54992 54992 54992 54972 48553 48553

Dependent variable mean 0.163 0.163 0.163 0.163 0.162 0.162

Demographic Controls ✓ ✓ ✓ ✓ ✓

Clinical Controls ✓ ✓ ✓ ✓

Zip Code Controls ✓ ✓ ✓

Hospital Controls ✓ ✓

Fixed Effects HRR

F 17.83 35.45 72.35 59.18 48.35 48.59

Adj. R2 0.000334 0.00430 0.0291 0.0291 0.0306 0.0326

Standard errors in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

All specs control for Minimum Distance to Nearest Hospital.
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Table 12: Reduced Form: Any 90-Day Readmission with Urogenital Infection

(1) (2) (3) (4) (5) (6)

Relative Distance -0.000113∗∗∗ -0.0000973∗∗∗ -0.0000735∗∗ -0.000102∗∗∗ -0.0000751∗∗ -0.0000807∗∗

(0.0000291) (0.0000288) (0.0000286) (0.0000297) (0.0000334) (0.0000369)

Observations 54992 54992 54992 54972 48553 48553

Dependent variable mean 0.0326 0.0326 0.0326 0.0326 0.0325 0.0325

Demographic Controls ✓ ✓ ✓ ✓ ✓

Clinical Controls ✓ ✓ ✓ ✓

Zip Code Controls ✓ ✓ ✓

Hospital Controls ✓ ✓

Fixed Effects HRR

F 15.09 31.04 27.25 22.46 17.78 19.27

Adj. R2 0.000210 0.00424 0.0110 0.0111 0.0113 0.0111

Standard errors in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

All specs control for Minimum Distance to Nearest Hospital.
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Table 13: Reduced Form: LOS ≥ 2

(1) (2) (3) (4) (5) (6)

Relative Distance 0.000184∗∗∗ 0.000231∗∗∗ 0.000259∗∗∗ 0.000224∗∗∗ 0.000218∗∗∗ 0.000197∗∗∗

(0.0000447) (0.0000454) (0.0000457) (0.0000462) (0.0000501) (0.0000519)

Observations 54992 54992 54992 54972 48553 48553

Dependent variable mean 0.950 0.950 0.950 0.950 0.949 0.949

Demographic Controls ✓ ✓ ✓ ✓ ✓

Clinical Controls ✓ ✓ ✓ ✓

Zip Code Controls ✓ ✓ ✓

Hospital Controls ✓ ✓

Fixed Effects HRR

F 17.01 40.68 18.52 15.40 13.50 13.66

Adj. R2 0.000387 0.00493 0.0113 0.0118 0.0143 0.0296

Standard errors in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

All specs control for Minimum Distance to Nearest Hospital.
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Table 14: Reduced Form: LOS ≥ 3

(1) (2) (3) (4) (5) (6)

Relative Distance -0.000342∗∗ -0.000116 0.000102 0.000235∗ 0.000213 0.000190

(0.000136) (0.000127) (0.000123) (0.000122) (0.000137) (0.000133)

Observations 54992 54992 54992 54972 48553 48553

Dependent variable mean 0.707 0.707 0.707 0.707 0.707 0.707

Demographic Controls ✓ ✓ ✓ ✓ ✓

Clinical Controls ✓ ✓ ✓ ✓

Zip Code Controls ✓ ✓ ✓

Hospital Controls ✓ ✓

Fixed Effects HRR

F 6.295 322.3 173.5 149.6 126.4 125.8

Adj. R2 0.000300 0.0490 0.109 0.111 0.115 0.138

Standard errors in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

All specs control for Minimum Distance to Nearest Hospital.
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C.4 Monotonicity

Table 15: Test for Monotonicity of Instrument

Age < 65 Age ≥ 65 Age ≥ 75 Age < 75 64 < Age < 75 Age < 65 or Age > 74 White Not White

Relative Distance -0.000487∗∗∗ -0.000332∗∗∗ -0.000289∗∗∗ -0.000416∗∗∗ -0.000359∗∗∗ -0.000405∗∗∗ -0.000391∗∗∗ -0.000286∗∗∗

(0.0000837) (0.0000696) (0.0000927) (0.0000606) (0.0000792) (0.0000672) (0.0000648) (0.0000966)

Observations 14751 33808 13703 34856 20105 28454 39713 8846

Malignant Neoplasm No Malignant Neoplasm Fibroids No Fibroids Pelvic Prolapse No Prolapse Genital Pain No Genital Pain

Relative Distance -0.000247∗∗∗ -0.000482∗∗∗ -0.000413∗∗∗ -0.000372∗∗∗ -0.000718∗∗∗ -0.000354∗∗∗ -0.000782∗∗∗ -0.000311∗∗∗

(0.0000827) (0.0000664) (0.0000772) (0.0000694) (0.000173) (0.0000600) (0.000122) (0.0000624)

Observations 22698 25861 13744 34815 3687 44872 6117 42442

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

First stage regression run on subsets of the sample, where the dependent variable is whether a hysterectomy was performed laparoscopically and the
independent variable is the instrumental variable, relative distance. Headers describe patient subsample. Relative distance is the difference between a
patient’s distance to her nearest hysterectomy-performing hospital with laparoscopic surgery and her distance to her nearest hysterectomy-performing
hospital. First stage estimates are qualitatively the same and quantitatively similar across subsamples, suggesting that different types of patients
respond to the instrument in the same way and that the instrument satisfies monotonicity.
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D Additional Two-Stage Least Squares Results

Table 16: Effect of Laparoscopic Procedure on the Probability of Length of Stay is 3 or More
Days: 2SLS

(1) (2) (3) (4) (5) (6)

Laparoscopic 0.616∗∗ 0.199 -0.174 -0.568∗∗ -0.552 -0.484
(0.258) (0.223) (0.208) (0.285) (0.344) (0.323)

Observations 54992 54992 54992 54972 48553 48553
Dependent Variable Mean 0.707 0.707 0.707 0.707 0.707 0.707
Demographic Controls ✓ ✓ ✓ ✓ ✓
Clinical Controls ✓ ✓ ✓ ✓
Zip Code Controls ✓ ✓ ✓
Hospital Controls ✓ ✓
Fixed Effects HRR
F 5.694 299.9 183.6 162.3 135.6 136.7
Adj. R2 -0.311 -0.0267 0.155 0.196 0.203 0.195
First-Stage Effective F 94.41 102.1 104.4 60.45 43.97 29.09

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Two-staged least squares estimates, using relative distance to hospital with laparoscopic
surgery as instrument. Across specifications, the effective F statistic (due to Montiel Olea
and Pflueger (2013) and Kleibergen and Paap (2006)) should be compared against either
the two-stage least squares/limited information maximum likelihood critical value for 5%
bias, which is 37.418, or for 10% bias, which is 23.109. Demographic controls: whether the
patient is Black, a race other than white or Black, under 65 years of age, or over 74 years of
age. Clinical controls: the Charlson comorbidity index and indicators for whether the pa-
tient had diabetes, malignant neoplasm, non-malignant neoplasm, body mass index of 30
or over (considered obese), history of cancer indicated on the hysterectomy claim, uterine
fibroids, endometriosis, pelvic organ prolapse, female genital bleeding, post-menopausal
bleeding, an ovarian cyst, female genital pain, or peripheral adhesions. Zip code controls
of the patient’s residence: white percent of residents, the college-educated percent of res-
idents, the percent of residents with public assistance (including cash or nutritional assis-
tance), the median household income, and the percent of residents on Medicaid. Hospital
controls: number of hysterectomies the hospital performed that year, a quality measure
on the appropriate use of antibiotics, a quality measure on the prevention of blood clots in
heart patients, and the overall Consumer Assessment of Healthcare Providers & Systems
(CAHPS) score. Standard errors assume clustering at the hospital level.
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Table 17: Local Effect of Laparoscopic Procedure on the Probability of Any 90-day Readmission:
2SLS

(1) (2) (3) (4) (5) (6)

Laparoscopic 0.527∗∗∗ 0.452∗∗∗ 0.298∗∗∗ 0.361∗∗ 0.174 0.284
(0.128) (0.119) (0.112) (0.163) (0.191) (0.215)

Observations 54992 54992 54992 54972 48553 48553
Dependent Variable Mean 0.163 0.163 0.163 0.163 0.162 0.162
Demographic Controls ✓ ✓ ✓ ✓ ✓
Clinical Controls ✓ ✓ ✓ ✓
Zip Code Controls ✓ ✓ ✓
Hospital Controls ✓ ✓
Fixed Effects HRR
F 16.89 31.29 66.94 52.58 47.34 44.93
Adj. R2 -0.148 -0.107 -0.0236 -0.0449 0.00935 -0.0256
First-Stage Effective F 94.41 102.1 104.4 60.45 43.97 29.09

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Two-staged least squares estimates, using relative distance to hospital with laparoscopic
surgery as instrument. Across specifications, the effective F statistic (due to Montiel Olea
and Pflueger (2013) and Kleibergen and Paap (2006)) should be compared against either the
two-stage least squares/limited information maximum likelihood critical value for 5% bias,
which is 37.418, or for 10% bias, which is 23.109. Demographic controls: whether the patient
is Black, a race other than white or Black, under 65 years of age, or over 74 years of age.
Clinical controls: the Charlson comorbidity index and indicators for whether the patient
had diabetes, malignant neoplasm, non-malignant neoplasm, body mass index of 30 or over
(considered obese), history of cancer indicated on the hysterectomy claim, uterine fibroids,
endometriosis, pelvic organ prolapse, female genital bleeding, post-menopausal bleeding, an
ovarian cyst, female genital pain, or peripheral adhesions. Zip code controls of the patient’s
residence: white percent of residents, the college-educated percent of residents, the percent
of residents with public assistance (including cash or nutritional assistance), the median
household income, and the percent of residents on Medicaid. Hospital controls: number of
hysterectomies the hospital performed that year, a quality measure on the appropriate use
of antibiotics, a quality measure on the prevention of blood clots in heart patients, and the
overall Consumer Assessment of Healthcare Providers & Systems (CAHPS) score. Standard
errors assume clustering at the hospital level.
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Table 18: Effect of Laparoscopic Procedure on the Probability of Any 90-day Readmission Accom-
panied by Urogenital Infection: 2SLS

(1) (2) (3) (4) (5) (6)

Laparoscopic 0.204∗∗∗ 0.168∗∗∗ 0.126∗∗ 0.247∗∗∗ 0.195∗∗ 0.206∗∗

(0.0550) (0.0516) (0.0502) (0.0778) (0.0923) (0.102)

Observations 54992 54992 54992 54972 48553 48553
Dependent Variable Mean 0.0326 0.0326 0.0326 0.0326 0.0325 0.0325
Demographic Controls ✓ ✓ ✓ ✓ ✓
Clinical Controls ✓ ✓ ✓ ✓
Zip Code Controls ✓ ✓ ✓
Hospital Controls ✓ ✓
Fixed Effects HRR
F 13.68 28.68 24.52 16.78 14.37 15.43
Adj. R2 -0.0937 -0.0610 -0.0274 -0.122 -0.0765 -0.0906
First-Stage Effective F 94.41 102.1 104.4 60.45 43.97 29.09

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Two-staged least squares estimates, using relative distance to hospital with laparoscopic
surgery as instrument. Across specifications, the effective F statistic (due to Montiel Olea
and Pflueger (2013) and Kleibergen and Paap (2006)) should be compared against either the
two-stage least squares/limited information maximum likelihood critical value for 5% bias,
which is 37.418, or for 10% bias, which is 23.109. Demographic controls: whether the patient
is Black, a race other than white or Black, under 65 years of age, or over 74 years of age. Clinical
controls: the Charlson comorbidity index and indicators for whether the patient had diabetes,
malignant neoplasm, non-malignant neoplasm, body mass index of 30 or over (considered
obese), history of cancer indicated on the hysterectomy claim, uterine fibroids, endometriosis,
pelvic organ prolapse, female genital bleeding, post-menopausal bleeding, an ovarian cyst, fe-
male genital pain, or peripheral adhesions. Zip code controls of the patient’s residence: white
percent of residents, the college-educated percent of residents, the percent of residents with
public assistance (including cash or nutritional assistance), the median household income, and
the percent of residents on Medicaid. Hospital controls: number of hysterectomies the hospital
performed that year, a quality measure on the appropriate use of antibiotics, a quality measure
on the prevention of blood clots in heart patients, and the overall Consumer Assessment of
Healthcare Providers & Systems (CAHPS) score.
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E Additional Results from Marginal Treatment Effect Estima-

tions

E.0.1 Results Using Local Instrumental Variable Method

This subsection provides support for the model’s predictions for marginal patients using the local instru-

mental variable method. Figure 16 graphically presents the estimates of marginal treatment effects with

respect to percentiles of unobserved resistance to laparoscopic hysterectomy, under four different parametric

approaches to modeling the outcomes as functions of unobserved heterogeneity and four different semipara-

metric approaches. Subfigure (a) summarizes the estimates across all model specifications. Figures (b)

through (i) show the estimates one at a time from each model, as well as 90 percent confidence intervals.

Standard errors are analytically derived for parametric models and bootstrapped for semiparametric models.

Effects are statistically significant across most percentiles in each model result. The local average treatment

effect estimate from Table 4, Column 4, −0.54, is near the middle of marginal treatment effects estimated

over the supported range of percentiles of resistance.

Figure 17 presents analogous results of marginal treatment effects on the chance of an all-cause 10-day

readmission. Subfigure (a) summarizes results across models and shows that estimated marginal treatment

effects are positive and upward sloping as functions of unobserved resistance to laparoscopic surgery, across

model specifications. Point estimates from parametric models, presents with confidence intervals in subfigures

(b) through (i), are not statistically significant at the 90 percent level at any levels of unobserved resistance,

although for some percentiles around 0.05 and 0.1, for which there is substantial common support, much of

the probability mass of the point estimates are positive. The local average treatment effect estimate from

Table 17, Column 4, 0.36, is near the middle of marginal treatment effects estimated over the supported

range of percentiles of resistance.

The estimates from local instrumental variable estimation of marginal treatment effects on length of

stay and readmission rate are supportive of the model’s prediction of a tradeoff among marginal patients

between the two adverse clinical outcomes. This is not surprising, since the local average treatment effects,

estimated above, are known to be weighted combinations of marginal treatment effects across the support

of the instrumental variable.

E.1 Results Using Separate Method

This subsection presents estimates of marginal treatment effects on length of stay and readmission risk

from the separate estimation method, presented analogously to the results from local instrumental variable
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estimation. The results largely resemble the results from the local instrumental variable approach. Figure 18

shows that across model specifications, marginal treatment effects on having a length of stay of two or more

days are estimated to be negative and, as a function of unobserved resistance, is estimated to be downward

sloping.

Figure 19 shows that the estimates of effects on any readmission from the separate method, like in the

local instrumental variable approach, are positive across most of the support, but not statistically significant

at the 90 percent confidence level. One difference is that estimates from the separate method suggest that

the marginal treatment effects as a function of unobserved resistance is upward sloping, whereas the local

instrumental variables method suggested it is downward sloping. Over the support, the separate method

estimates that the marginal treatment effect varies from about 0.5 to zero. The two-stage least squares

estimate of the local average treatment effect on readmission risk is 0.361, controlling for demographic,

clinical, and Zip code-level controls, and it is 0.173 when additionally controlling for hospital characteristics.

These estimates of the local effect fall within the range of estimated marginal effects.

E.2 Marginal Treatment Effect Weights

The local average treatment effect is a weighted combination of the marginal treatment effects across all

percentiles of unobserved resistance. Figure 20 plots the weights, estimated from data, that relate the

marginal treatment effect at a particular level of unobserved resistance to the local average treatment effect.

Recall from Heckman and Vytlacil (1999, 2005) and Heckman, Urzua and Vytlacil (2006) that

LATEY (p0, p1) =

∫ p1

p0

MTEY (p)φZIV (uDL
) dp (59)

where the weights relating the MTEs to the LATE are:

φZIV (uD) =
E [Z − E[Z] | P (Z) > uD]Pr (P (Z) > uD)

Cov (Z,D)

Certain observations are weighted more heavily if their treatment covaries with particular ranges of

the instrument more. The weights integrate to one, can be negative if the instrument does not satisfy

monotonicity, and can be consistently estimated from the sample.
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(a) All estimates of effect on readmission,
from separate method. Summarizes esti-
mates in plots (b) through (g).

(b) Parametric: Normal. (c) Parametric: first-degree
polynomial.

(d) Parametric: second-
degree polynomial.

(e) Parametric: third-degree
polynomial.

(f) Semiparametric: band-
width 0.05.

(g) Semiparametric: band-
width 0.03.

(h) Semiparametric: band-
width 0.02.

(i) Semiparametric: band-
width 0.01.

Figure 16: Local Instrumental Variable Method: Length of Stay. Estimates of marginal treatment effects
of laparoscopic surgery, as opposed to abdominal surgery, on the probability of the length of stay being two or more
days, using the separate approach. The horizontal axis in each plot is UD, the case’s percentile on the distribution of
unobserved “resistance” to or “cost” of the laparoscopic choice. Gray bands are 90% confidence intervals. Unobserved
heterogeneity, modeled as a function of the propensity score, p, is alternatively modeled parameterically (either Normal
or as a polynomial of p) or semiparametrically, using the Epanechnikov kernel with alternative bandwidths. Standard
errors are bootstrapped with 100 repititions. Subfigure (a) summarizes the point estimates in plots (b) through (h).
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(a) All estimates of effect on readmission,
from separate method. Summarizes esti-
mates in plots (b) through (g).

(b) Parametric: Normal. (c) Parametric: first-degree
polynomial.

(d) Parametric: second-
degree polynomial.

(e) Parametric: third-degree
polynomial.

(f) Semiparametric: band-
width 0.05.

(g) Semiparametric: band-
width 0.03.

(h) Semiparametric: band-
width 0.02.

(i) Semiparametric: band-
width 0.01.

Figure 17: Local Instrumental Variable Method: Readmissions. Estimates of marginal treatment effects of
laparoscopic surgery, as opposed to abdominal surgery, on the probability of an all-cause 10-day readmission, using the
local instrumental variable approach. The horizontal axis in each plot is UD, the case’s percentile on the distribution of
unobserved “resistance” to or “cost” of the laparoscopic choice. Gray bands are 90% confidence intervals. Unobserved
heterogeneity, modeled as a function of the propensity score,p, is alternatively modeled parameterically (either Normal
or as a polynomial of p) or semiparametrically, using the Epanechnikov kernel with alternative bandwidths. Standard
errors are bootstrapped with 100 repititions. Subfigure (a) summarizes the point estimates in plots (b) through (h).
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(a) All estimates of effect on readmission,
from separate method. Summarizes esti-
mates in plots (b) through (g).

(b) Parametric: Normal. (c) Parametric: first-degree
polynomial.

(d) Parametric: second-
degree polynomial.

(e) Parametric: third-degree
polynomial.

(f) Semiparametric: band-
width 0.05.

(g) Semiparametric: band-
width 0.03.

(h) Semiparametric: band-
width 0.02.

(i) Semiparametric: band-
width 0.01.

Figure 18: Separate Method: Length of Stay. Estimates of marginal treatment effects of laparoscopic surgery,
as opposed to abdominal surgery, on the probability of the length of stay being two or more days, using the separate
approach. The horizontal axis in each plot is UD, the case’s percentile on the distribution of unobserved “resistance”
to or “cost” of the laparoscopic choice. Gray bands are 90% confidence intervals. Unobserved heterogeneity, modeled
as a function of the propensity score,p, is alternatively modeled parameterically (either Normal or as a polynomial of p)
or semiparametrically, using the Epanechnikov kernel with alternative bandwidths. Standard errors are bootstrapped
with 100 repititions. Subfigure (a) summarizes the point estimates in plots (b) through (f).
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(a) All estimates of effect on readmission,
from separate method. Summarizes esti-
mates in plots (b) through (g).

(b) Parametric: Normal. (c) Parametric: first-degree
polynomial.

(d) Parametric: second-
degree polynomial.

(e) Parametric: third-degree
polynomial.

(f) Semiparametric: band-
width 0.05.

(g) Semiparametric: band-
width 0.03.

(h) Semiparametric: band-
width 0.02.

(i) Semiparametric: band-
width 0.01.

Figure 19: Separate Method: Readmission. Estimates of marginal treatment effects of laparoscopic surgery,
as opposed to abdominal surgery, on the probability of an all-cause 10-day readmission, using the separate approach.
The horizontal axis in each plot is UD, the case’s percentile on the distribution of unobserved “resistance” to or
“cost” of the laparoscopic choice. Gray bands are 90% confidence intervals. Unobserved heterogeneity, modeled as a
function of the propensity score,p, is alternatively modeled parameterically (either Normal or as a polynomial of p)
or semiparametrically, using the Epanechnikov kernel with alternative bandwidths. Standard errors for parametric
models are calculated analytically, while standard errors for semiparametric models are bootstrapped with 100 repi-
titions. Subfigure (a) summarizes the point estimates in plots (b) through (g).
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Figure 20: Weights Relating the Marginal Treatment Effects to the Local Average Treatment Effects

The horizontal axis in each plot is UD, the case’s percentile on the distribution of unobserved “resistance” to or “cost” of the
laparoscopic choice. The Xs indicate the weight that relates the marginal treatment effect at that percentile to the local average
treatment effect.
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F Full Marginal Rate of Substitution Estimates

Figure 21 presents the estimates of the marginal rates of substitution, and their respective confidence inter-

vals, calculated from the marginal treatment effects on length of stay and on readmission, which are also

plotted alongside.

80



Figure 21: Estimates of Marginal Rate of Substitution, Their Confidence Intervals, and Marginal Treatment Effects

Estimates from Local Instrumental Variable Method

(a) Parametric: Normal. (b) Parametric: first-degree
polynomial.

(c) Parametric: second-degree
polynomial.

(d) Parametric: third-degree
polynomial.

(e) Semiparametric: band-
width 0.05.

(f) Semiparametric: band-
width 0.03.

(g) Semiparametric: band-
width 0.02.

(h) Semiparametric: band-
width 0.01.

Estimates from Separate Method

(i) Parametric: Normal. (j) Parametric: first-degree
polynomial.

(k) Parametric: second-degree
polynomial.

(l) Parametric: third-degree
polynomial.

(m) Semiparametric: band-
width 0.05.

(n) Semiparametric: band-
width 0.03.

(o) Semiparametric: band-
width 0.02.

(p) Semiparametric: band-
width 0.01.

Estimates of marginal rate of subtitution (MRS) and, in gray bands, their 90% confidence intervals, as well as the marginal
treatment effects of the separate method from which they are calculated. The horizontal axis in each plot is UD, the case’s
percentile on the distribution of unobserved “resistance” to or “cost” of the laparoscopic choice. Unobserved heterogeneity,
modeled as a function of the propensity score,p, is alternatively modeled parameterically (either Normal or as a polynomial of
p) or semiparametrically, using the Epanechnikov kernel with alternative bandwidths. Standard errors for parametric models
are calculated analytically, while standard errors for semiparametric models are bootstrapped with 100 repititions. In Panel
(b), the plotted lower confidence bounds for the MRS at UD = 11, ..., 14 are truncated. They reach a minimum of -5.
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